https://ac.nowcoder.com/acm/contest/889/B
假如我们能够求出 (x-y) 在模p意义的值,那么就可以和 (x+y) 联立解出来了。
由于 ((x-y)^2=(x+y)^2-4xy=b^2-4c) ,那么设 (n=b^2-4c) ,就是要求解出一个二次剩余。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int p = 1e9 + 7;
struct hh {
ll x, y;
hh() {};
hh(ll _x, ll _y) {
x = _x;
y = _y;
}
};
ll w;
hh mul(hh a, hh b, ll p) {
hh ans;
ans.x = (a.x * b.x % p + a.y * b.y % p * w % p) % p;
ans.y = (a.x * b.y % p + a.y * b.x % p) % p;
return ans;
}
hh quick1(hh a, ll b, ll p) {
hh ans = hh(1, 0);
while(b) {
if(b & 1)
ans = mul(ans, a, p);
a = mul(a, a, p);
b >>= 1;
}
return ans;
}
ll quick2(ll a, ll b, ll p) {
ll ans = 1;
while(b) {
if(b & 1)
ans = (ans * a) % p;
b >>= 1;
a = (a * a) % p;
}
return ans;
}
ll solve(ll a, ll p) { //求解 x^2=a(mod p) 的x的值
a %= p; //注意这句话
if(a == 0)
return 0;//注意这句话
if(p == 2)
return a;
if(quick2(a, (p - 1) / 2, p) == p - 1)
return -1;
ll b, t;
while(1) {
b = rand() % p;
t = b * b - a;
w = (t % p + p) % p;
if(quick2(w, (p - 1) / 2, p) == p - 1)
break;
}
hh ans = hh(b, 1);
ans = quick1(ans, (p + 1) / 2, p);
return ans.x;
}
ll qpow(ll x, ll n, ll p) {
ll res = 1;
while(n) {
if(n & 1)
res = res * x % p;
x = x * x % p;
n >>= 1;
}
return res;
}
ll x, y;
void solvexy(ll b, ll d) {
y = (b + d) % p * qpow(2, p - 2, p) % p;
x = (b - y + p) % p;
if(x > y)
swap(x, y);
return;
}
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
int t;
scanf("%d", &t);
while (t--) {
ll b, c;
scanf("%lld%lld", &b, &c);
ll n = b * b - 4ll * c;
n = (n % p + p) % p;
ll d = solve(n, p);
if (d == -1)
printf("-1 -1
");
else {
solvexy(b, d);
printf("%lld %lld
", x, y);
}
}
}