zoukankan      html  css  js  c++  java
  • Matrix Power Series(POJ 3233)

    • 原题如下:
      Matrix Power Series
      Time Limit: 3000MS   Memory Limit: 131072K
      Total Submissions: 28044   Accepted: 11440

      Description

      Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

      Input

      The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

      Output

      Output the elements of S modulo m in the same way as A is given.

      Sample Input

      2 2 4
      0 1
      1 1

      Sample Output

      1 2
      2 3
    • 题解:构造矩阵:

      此时,令Sk=I+A+…+Ak-1,则有:

      通过计算这个矩阵的k次幂,就可求出A的累乘和,时间复杂度为O(n3logk)

    • 代码:
       1 #include <cstdio>
       2 #include <cctype>
       3 #define number s-'0'
       4 #include <cstring>
       5 #include <vector>
       6 
       7 using namespace std;
       8 
       9 typedef vector<int> vec;
      10 typedef    vector<vec> mat;
      11 
      12 int n,k,m;
      13 mat A;
      14 
      15 void read(int &x)
      16 {
      17     char s;
      18     x=0;
      19     bool flag=0;
      20     while (!isdigit(s=getchar()))
      21         (s=='-')&&(flag=true);
      22     for (x=number; isdigit(s=getchar());x=x*10+number);
      23     (flag)&&(x=-x);
      24 }
      25 
      26 void write(int x)
      27 {
      28     if (x<0)
      29     {
      30         putchar('-');
      31         x=-x;
      32     }
      33     if (x>9) write(x/10);
      34     putchar(x%10+'0');
      35 }
      36 
      37 mat mul(mat &A, mat &B)
      38 {
      39     mat C(A.size(), vec(B[0].size()));
      40     for (int i=0; i<A.size(); i++)
      41     {
      42         for (int j=0; j<B[0].size(); j++)
      43         {
      44             for (int k=0; k<B.size(); k++)
      45             {
      46                 C[i][j]=(C[i][j]+A[i][k]*B[k][j])%m;
      47             }
      48         }
      49     }
      50     return C;
      51 }
      52 
      53 mat pow(mat A, int n)
      54 {
      55     mat B(A.size(), vec(A.size()));
      56     for (int i=0; i<A.size(); i++) B[i][i]=1;
      57     while (n>0)
      58     {
      59         if (n&1) B=mul(B, A);
      60         A=mul(A, A);
      61         n>>=1;
      62     }
      63     return B;
      64 }
      65 
      66 int main(int argc, char * argv[])
      67 {
      68     read(n);read(k);read(m);
      69     A=mat (n,vec(n));
      70     mat B(n*2, vec(n*2));
      71     for (int i=0; i<n; i++)
      72     {
      73         for (int j=0; j<n; j++)
      74         {
      75             read(A[i][j]);
      76             B[i][j]=A[i][j];
      77         }
      78         B[n+i][i]=B[n+i][n+i]=1;
      79     }
      80     B=pow(B,k+1);
      81     for (int i=0; i<n; i++)
      82     {
      83         for (int j=0; j<n; j++)
      84         {
      85             int a=B[n+i][j]%m;
      86             if (i==j) a=(a+m-1)%m;
      87             printf("%d%c", a, j+1==n?'
      ':' ');
      88         }
      89     }
      90 }
  • 相关阅读:
    python征程1.4(初识python)
    python征程1.3(初识python)
    python征程1.2(初识python)
    python征程1.1(初识python)
    什么是servlet
    什么是JavaBean
    基于Ajax的前后端分离
    项目开发流程
    项目框架和项目架构
    Java中使用 foreach 操作数组
  • 原文地址:https://www.cnblogs.com/Ymir-TaoMee/p/9573380.html
Copyright © 2011-2022 走看看