zoukankan      html  css  js  c++  java
  • MySQL为什么"错误"选择代价更大的索引

    1.问题描述

    群友提出问题,表里有两个列c1、c2,分别为INT、VARCHAR类型,且分别创建了unique key。

    SQL查询的条件是 WHERE c1 = ? AND c2 = ?,用EXPLAIN查看执行计划,发现优化器优先选择了VARCHAR类型的c2列索引。

    他表示很不理解,难道不应该选择看起来代价更小的INT类型的c1列吗?

    2.问题复现

    创建测试表t1:

    [root@yejr.run]> CREATE TABLE `t1` (
      `c1` int NOT NULL AUTO_INCREMENT,
      `c2` int unsigned NOT NULL,
      `c3` varchar(20) NOT NULL,
      `c4` varchar(20) NOT NULL,
      PRIMARY KEY (`c1`),
      UNIQUE KEY `k3` (`c3`),
      UNIQUE KEY `k2` (`c2`)
    ) ENGINE=InnoDB;

    利用 mysql_random_data_load 写入一万行数据:

    mysql_random_data_load -h127.0.0.1 -uuser -p123456 wang t1 10000

    查看执行计划:

    mysql> EXPLAIN SELECT * FROM t1 WHERE c2 = 950391508 AND c3 = 'Patrick Price'\G
    *************************** 1. row ***************************
               id: 1
      select_type: SIMPLE
            table: t1
       partitions: NULL
             type: const
    possible_keys: k3,k2
              key: k3
          key_len: 82
              ref: const
             rows: 1
         filtered: 100.00
            Extra: NULL
    1 row in set, 1 warning (0.01 sec)
    
    mysql> 

    可以看到优化器的确选择了 k3 索引,而非"预期"的 k2 索引,这是为什么呢?

    3.问题分析

    其实原因很简单粗暴:优化器认为这两个索引选择的代价都是一样的,只是优先选中排在前面的那个索引而已。

    再建一个相同的表 t2,只不过把 k2、k3 的索引创建顺序对调下:

    [root@yejr.run]> CREATE TABLE `t2` (
      `c1` int NOT NULL AUTO_INCREMENT,
      `c2` int unsigned NOT NULL,
      `c3` varchar(20) NOT NULL,
      `c4` varchar(20) NOT NULL,
      PRIMARY KEY (`c1`),
      UNIQUE KEY `k2` (`c2`),
      UNIQUE KEY `k3` (`c3`)
    ) ENGINE=InnoDB;

    再次利用利用 mysql_random_data_load 写入一万行数据:

    mysql_random_data_load -h127.0.0.1 -uuser -p123456 wang t2 10000

    再查看执行计划:

    mysql> EXPLAIN SELECT * FROM t2 WHERE c2 = 1051998464 AND c3 = 'Tammy Bell'\G
    *************************** 1. row ***************************
               id: 1
      select_type: SIMPLE
            table: t2
       partitions: NULL
             type: const
    possible_keys: k2,k3
              key: k2
          key_len: 4
              ref: const
             rows: 1
         filtered: 100.00
            Extra: NULL
    1 row in set, 1 warning (0.01 sec)
    
    mysql> 

    我们利用 EXPLAIN ANALYZE 来查看下两次执行计划的代价对比:

    -- 查看t1表执行计划代价
    mysql> EXPLAIN ANALYZE SELECT * FROM t1 WHERE c2 = 950391508 AND c3 = 'Patrick Price'\G
    *************************** 1. row ***************************
    EXPLAIN: -> Rows fetched before execution  (cost=0.00..0.00 rows=1) (actual time=0.002..0.003 rows=1 loops=1)
    
    1 row in set (0.00 sec)
    
    mysql> 
    
    -- 查看t2表执行计划代价
    mysql> EXPLAIN ANALYZE SELECT * FROM t2 WHERE c2 = 1051998464 AND c3 = 'Tammy Bell'\G
    *************************** 1. row ***************************
    EXPLAIN: -> Rows fetched before execution  (cost=0.00..0.00 rows=1) (actual time=0.002..0.003 rows=1 loops=1)
    
    1 row in set (0.00 sec)
    
    mysql> 

    可以看到,很明显代价都是一样的。

    再利用 OPTIMIZE_TRACE 查看执行计划,也能看到两个SQL的代价是一样的(重点查看rows_estimation部分):

    查看t1表执行计划代价

    --开启OPTIMIZER_TRACE功能,并设置要展示的数据条目数:
    set optimizer_trace="enabled=on",end_markers_in_json=on;
    
    -- 查看t1表执行计划代价
    mysql> SELECT * FROM t1 WHERE c2 = 950391508 AND c3 = 'Patrick Price'\G
    *************************** 1. row ***************************
    c1: 55
    c2: 950391508
    c3: Patrick Price
    c4: Roger Harvey
    1 row in set (0.00 sec)
    
    mysql> 
    mysql> SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE limit 30 \G;
    *************************** 1. row ***************************
                                QUERY: SELECT * FROM t1 WHERE c2 = 950391508 AND c3 = 'Patrick Price'
                                TRACE: {
      "steps": [
        {
          "join_preparation": {
            "select#": 1,
            "steps": [
              {
                "expanded_query": "/* select#1 */ select `t1`.`c1` AS `c1`,`t1`.`c2` AS `c2`,`t1`.`c3` AS `c3`,`t1`.`c4` AS `c4` from `t1` where ((`t1`.`c2` = 950391508) and (`t1`.`c3` = 'Patrick Price'))"
              }
            ] /* steps */
          } /* join_preparation */
        },
        {
          "join_optimization": {
            "select#": 1,
            "steps": [
              {
                "condition_processing": {
                  "condition": "WHERE",
                  "original_condition": "((`t1`.`c2` = 950391508) and (`t1`.`c3` = 'Patrick Price'))",
                  "steps": [
                    {
                      "transformation": "equality_propagation",
                      "resulting_condition": "(multiple equal(950391508, `t1`.`c2`) and multiple equal('Patrick Price', `t1`.`c3`))"
                    },
                    {
                      "transformation": "constant_propagation",
                      "resulting_condition": "(multiple equal(950391508, `t1`.`c2`) and multiple equal('Patrick Price', `t1`.`c3`))"
                    },
                    {
                      "transformation": "trivial_condition_removal",
                      "resulting_condition": "(multiple equal(950391508, `t1`.`c2`) and multiple equal('Patrick Price', `t1`.`c3`))"
                    }
                  ] /* steps */
                } /* condition_processing */
              },
              {
                "substitute_generated_columns": {
                } /* substitute_generated_columns */
              },
              {
                "table_dependencies": [
                  {
                    "table": "`t1`",
                    "row_may_be_null": false,
                    "map_bit": 0,
                    "depends_on_map_bits": [
                    ] /* depends_on_map_bits */
                  }
                ] /* table_dependencies */
              },
              {
                "ref_optimizer_key_uses": [
                  {
                    "table": "`t1`",
                    "field": "c3",
                    "equals": "'Patrick Price'",
                    "null_rejecting": true
                  },
                  {
                    "table": "`t1`",
                    "field": "c2",
                    "equals": "950391508",
                    "null_rejecting": true
                  }
                ] /* ref_optimizer_key_uses */
              },
              {
                "rows_estimation": [
                  {
                    "table": "`t1`",
                    "rows": 1,
                    "cost": 1,
                    "table_type": "const",
                    "empty": false
                  }
                ] /* rows_estimation */
              },
              {
                "condition_on_constant_tables": "true",
                "condition_value": true
              },
              {
                "attaching_conditions_to_tables": {
                  "original_condition": "true",
                  "attached_conditions_computation": [
                  ] /* attached_conditions_computation */,
                  "attached_conditions_summary": [
                  ] /* attached_conditions_summary */
                } /* attaching_conditions_to_tables */
              },
              {
                "refine_plan": [
                ] /* refine_plan */
              }
            ] /* steps */
          } /* join_optimization */
        },
        {
          "join_execution": {
            "select#": 1,
            "steps": [
            ] /* steps */
          } /* join_execution */
        }
      ] /* steps */
    }
    MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0
              INSUFFICIENT_PRIVILEGES: 0
    1 row in set (0.00 sec)
    
    ERROR: 
    No query specified
    
    mysql> 
    
    --分析完成,关闭OPTIMIZER_TRACE
    SET optimizer_trace="enabled=off";

    查看t2表执行计划代价

    --开启OPTIMIZER_TRACE功能,并设置要展示的数据条目数:
    set optimizer_trace="enabled=on",end_markers_in_json=on;
    
    -- 查看t2表执行计划代价
    mysql> SELECT * FROM t2 WHERE c2 = 1051998464 AND c3 = 'Tammy Bell'\G
    *************************** 1. row ***************************
    c1: 143
    c2: 1051998464
    c3: Tammy Bell
    c4: Jane Perry
    1 row in set (0.00 sec)
    
    mysql> 
    mysql> SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE limit 30 \G;
    *************************** 1. row ***************************
                                QUERY: SELECT * FROM t2 WHERE c2 = 1051998464 AND c3 = 'Tammy Bell'
                                TRACE: {
      "steps": [
        {
          "join_preparation": {
            "select#": 1,
            "steps": [
              {
                "expanded_query": "/* select#1 */ select `t2`.`c1` AS `c1`,`t2`.`c2` AS `c2`,`t2`.`c3` AS `c3`,`t2`.`c4` AS `c4` from `t2` where ((`t2`.`c2` = 1051998464) and (`t2`.`c3` = 'Tammy Bell'))"
              }
            ] /* steps */
          } /* join_preparation */
        },
        {
          "join_optimization": {
            "select#": 1,
            "steps": [
              {
                "condition_processing": {
                  "condition": "WHERE",
                  "original_condition": "((`t2`.`c2` = 1051998464) and (`t2`.`c3` = 'Tammy Bell'))",
                  "steps": [
                    {
                      "transformation": "equality_propagation",
                      "resulting_condition": "(multiple equal(1051998464, `t2`.`c2`) and multiple equal('Tammy Bell', `t2`.`c3`))"
                    },
                    {
                      "transformation": "constant_propagation",
                      "resulting_condition": "(multiple equal(1051998464, `t2`.`c2`) and multiple equal('Tammy Bell', `t2`.`c3`))"
                    },
                    {
                      "transformation": "trivial_condition_removal",
                      "resulting_condition": "(multiple equal(1051998464, `t2`.`c2`) and multiple equal('Tammy Bell', `t2`.`c3`))"
                    }
                  ] /* steps */
                } /* condition_processing */
              },
              {
                "substitute_generated_columns": {
                } /* substitute_generated_columns */
              },
              {
                "table_dependencies": [
                  {
                    "table": "`t2`",
                    "row_may_be_null": false,
                    "map_bit": 0,
                    "depends_on_map_bits": [
                    ] /* depends_on_map_bits */
                  }
                ] /* table_dependencies */
              },
              {
                "ref_optimizer_key_uses": [
                  {
                    "table": "`t2`",
                    "field": "c2",
                    "equals": "1051998464",
                    "null_rejecting": true
                  },
                  {
                    "table": "`t2`",
                    "field": "c3",
                    "equals": "'Tammy Bell'",
                    "null_rejecting": true
                  }
                ] /* ref_optimizer_key_uses */
              },
              {
                "rows_estimation": [
                  {
                    "table": "`t2`",
                    "rows": 1,
                    "cost": 1,
                    "table_type": "const",
                    "empty": false
                  }
                ] /* rows_estimation */
              },
              {
                "condition_on_constant_tables": "true",
                "condition_value": true
              },
              {
                "attaching_conditions_to_tables": {
                  "original_condition": "true",
                  "attached_conditions_computation": [
                  ] /* attached_conditions_computation */,
                  "attached_conditions_summary": [
                  ] /* attached_conditions_summary */
                } /* attaching_conditions_to_tables */
              },
              {
                "refine_plan": [
                ] /* refine_plan */
              }
            ] /* steps */
          } /* join_optimization */
        },
        {
          "join_execution": {
            "select#": 1,
            "steps": [
            ] /* steps */
          } /* join_execution */
        }
      ] /* steps */
    }
    MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0
              INSUFFICIENT_PRIVILEGES: 0
    1 row in set (0.00 sec)
    
    ERROR: 
    No query specified
    
    mysql>
    
    --分析完成,关闭OPTIMIZER_TRACE
    SET optimizer_trace="enabled=off";

    所以,优化器认为选择哪个索引都是一样的,就看哪个索引排序更靠前。

    从执行SELECT时的debug trace结果也能佐证:

    -- 1、 T1表,k3索引在前面
      PRIMARY KEY (`c1`),
      UNIQUE KEY `k3` (`c3`),
      UNIQUE KEY `k2` (`c2`)
      
    T@2: | | | | | | | | opt: (null): starting struct
    T@2: | | | | | | | | opt: table: "`t1`"
    T@2: | | | | | | | | opt: field: "c3"   (C3在前面,因此最后使用k3)
    T@2: | | | | | | | | >convert_string
    T@2: | | | | | | | | | >alloc_root
    T@2: | | | | | | | | | | enter: root: 0x40a8068
    T@2: | | | | | | | | | | exit: ptr: 0x4b41ab0
    T@2: | | | | | | | | | <alloc_root 304
    T@2: | | | | | | | | <convert_string 2610
    T@2: | | | | | | | | opt: equals: "'Louise Garrett'" 
    T@2: | | | | | | | | opt: null_rejecting: 0
    T@2: | | | | | | | | opt: (null): ending struct
    T@2: | | | | | | | | opt: Key_use: optimize= 0 used_tables=0x0 ref_table_rows= 18446744073709551615 keypart_map= 1
    T@2: | | | | | | | | opt: (null): starting struct
    T@2: | | | | | | | | opt: table: "`t1`"
    T@2: | | | | | | | | opt: field: "c2"
    T@2: | | | | | | | | opt: equals: "22896242"
    T@2: | | | | | | | | opt: null_rejecting: 0
    T@2: | | | | | | | | opt: null_rejecting: 0
    T@2: | | | | | | | | opt: (null): ending struct
    T@2: | | | | | | | | opt: Key_use: optimize= 0 used_tables=0x0 ref_table_rows= 18446744073709551615 keypart_map= 1
    T@2: | | | | | | | | opt: (null): starting struct
    T@2: | | | | | | | | opt: table: "`t1`"
    T@2: | | | | | | | | opt: field: "c2"
    T@2: | | | | | | | | opt: equals: "22896242"
    T@2: | | | | | | | | opt: null_rejecting: 0
    T@2: | | | | | | | | opt: (null): ending struct
    T@2: | | | | | | | | opt: ref_optimizer_key_uses: ending struct
    T@2: | | | | | | | | opt: (null): ending struct
    
    -- 2、 T2表,k2索引在前面
      PRIMARY KEY (`c1`),
      UNIQUE KEY `k2` (`c2`),
      UNIQUE KEY `k3` (`c3`)
      
    T@2: | | | | | | | | opt: (null): starting struct
    T@2: | | | | | | | | opt: table: "`t2`"
    T@2: | | | | | | | | opt: field: "c2" (C2在前面因此使用k2索引)
    T@2: | | | | | | | | opt: equals: "22896242"
    T@2: | | | | | | | | opt: null_rejecting: 0
    T@2: | | | | | | | | opt: (null): ending struct
    T@2: | | | | | | | | opt: Key_use: optimize= 0 used_tables=0x0 ref_table_rows= 18446744073709551615 keypart_map= 1
    T@2: | | | | | | | | opt: (null): starting struct
    T@2: | | | | | | | | opt: table: "`t2`"
    T@2: | | | | | | | | opt: field: "c3"
    T@2: | | | | | | | | >convert_string
    T@2: | | | | | | | | | >alloc_root
    T@2: | | | | | | | | | | enter: root: 0x40a8068
    T@2: | | | | | | | | | | exit: ptr: 0x4b41ab0
    T@2: | | | | | | | | | <alloc_root 304
    T@2: | | | | | | | | <convert_string 2610
    T@2: | | | | | | | | opt: equals: "'Louise Garrett'"
    T@2: | | | | | | | | opt: null_rejecting: 0
    T@2: | | | | | | | | opt: (null): ending struct
    T@2: | | | | | | | | opt: ref_optimizer_key_uses: ending struct
    T@2: | | | | | | | | opt: (null): ending struct

    4.问题延伸

    到这里,我们不禁有疑问,这两个索引的代价真的是一样吗?

    就让我们用 mysqlslap 来做个简单对比测试吧:

    -- 测试1:对c2列随机point select
    [root@ocky-Linux-8-4 ~]# mysqlslap -h127.0.0.1 -uuser -p123456 --no-drop --create-schema wang -i 3 --number-of-queries 1000000 -q "set @xid = cast(round(rand()*2147265929) as unsigned); select * from t1 where c2 = @xid" -c 8 
    mysqlslap: [Warning] Using a password on the command line interface can be insecure.
    Benchmark
            Average number of seconds to run all queries: 40.534 seconds   #运行所有语句的平均秒数
            Minimum number of seconds to run all queries: 39.465 seconds   #运行所有语句的最小秒数
            Maximum number of seconds to run all queries: 41.746 seconds   #运行所有语句的最大秒数
            Number of clients running queries: 8                           #客户端数量
            Average number of queries per client: 125000                   #每个客户端运行查询的平均数
    
    
    -- 测试2:对c3列随机point select
    [root@ocky-Linux-8-4 ~]# mysqlslap -h127.0.0.1 -uuser -p123456 --no-drop --create-schema wang -i 3 --number-of-queries 1000000 -q "set @xid = concat('u',cast(round(rand()*2147265929) as unsigned)); select * from t1 where c3 = @xid" -c 8
    mysqlslap: [Warning] Using a password on the command line interface can be insecure.
    Benchmark
            Average number of seconds to run all queries: 42.275 seconds
            Minimum number of seconds to run all queries: 41.714 seconds
            Maximum number of seconds to run all queries: 43.138 seconds
            Number of clients running queries: 8
            Average number of queries per client: 125000

    可以看到,如果是走 c3 列索引,耗时会比走 c2 列索引多出来约 4%(在我的环境下测试的结果,不同环境、不同数据量可能也不同)。

    看来,MySQL优化器还是有必要进一步提高的哟 :)

    测试使用版本:MySQL 8.0.27(MySQL 5.6.39结果亦是如此)。

    原文链接:https://mp.weixin.qq.com/s/8pwqetWeORuDgs2VSSfEkg

  • 相关阅读:
    (转)Java并发包:AtomicBoolean和AtomicReference
    (转)maven怎么 引入(或引用/使用) 自定义(或本地/第三方) jar的三种方式 图文教程 方法二最简单
    servlet3.0 异步处理
    (转)Groovy简介
    (转)springboot应用启动原理(一) 将启动脚本嵌入jar
    (转)springboot应用启动原理(二) 扩展URLClassLoader实现嵌套jar加载
    (转)运行jar应用程序引用其他jar包的四种方法 -- ClassLoader应用
    (转)二层网络结构和三层网络结构的对比
    Java语法糖4:内部类
    Java语法糖3:泛型
  • 原文地址:https://www.cnblogs.com/Yongzhouunknown/p/15785277.html
Copyright © 2011-2022 走看看