zoukankan      html  css  js  c++  java
  • python之面向对象编程二

    类的成员

    类的成员可以分为三大类:字段、方法、属性。

    字段:普通字段、静态字段。

    方法:普通方法、类方法、静态方法

    属性:普通属性。

    注:所有成员中,只有普通字段的内容保存对象中,即:根据此类创建了多少对象,在内存中就有多少个普通字段。而其他的成员,则都是保存在类中,即:无论对象的多少,在内存中只创建一份。

    一、字段

    字段包括:普通字段和静态字段,他们在定义和使用中有所区别,而最本质的区别是内存中保存的位置不同。

    • 普通字段属于对象
    • 静态字段属于
    class Province:
    
        # 静态字段
        country = '中国'
    
        def __init__(self, name):
    
            # 普通字段
            self.name = name
    
    
    # 直接访问普通字段
    obj = Province('吉林省')
    print obj.name
    
    # 直接访问静态字段
    Province.country
    字段的定义和使用

    由上述代码可以看出【普通字段需要通过对象来访问】【静态字段通过类访问】,在使用上可以看出普通字段和静态字段的归属是不同的。其在内容的存储方式类似如下图:

    由上图可是:

    • 静态字段在内存中只保存一份
    • 普通字段在每个对象中都要保存一份

    应用场景: 通过类创建对象时,如果每个对象都具有相同的字段,那么就使用静态字段

    二、方法

    方法包括:普通方法、静态方法和类方法,三种方法在内存中都归属于类,区别在于调用方式不同。

    • 普通方法:由对象调用;至少一个self参数;执行普通方法时,自动将调用该方法的对象赋值给self
    • 类方法:由调用; 至少一个cls参数;执行类方法时,自动将调用该方法的复制给cls
    • 静态方法:由调用;无默认参数;

    1.静态方法

    通过@staticmethod装饰器即可把其装饰的方法变为一个静态方法,什么是静态方法呢?其实不难理解,普通的方法,可以在实例化后直接调用,并且在方法里可以通过self.调用实例变量或类变量,但静态方法是不可以访问实例变量或类变量的,一个不能访问实例变量和类变量的方法,其实相当于跟类本身已经没什么关系了,它与类唯一的关联就是需要通过类名来调用这个方法。

    class people(object):
     
        def __init__(self,name):
            self.name = name
     
        @staticmethod #把eat方法变为静态方法
        def eat(self):
            print("%s is eating" % self.name)
     
     
     
    d = people("tom")
    d.eat()

    上面的调用会出以下错误,说是eat需要一个self参数,但调用时却没有传递,没错,当eat变成静态方法后,再通过实例调用时就不会自动把实例本身当作一个参数传给self了。

    Traceback (most recent call last):
      File "D:/pycharm/project/day6/静态方法.py", line 13, in <module>
        d.eat()
    TypeError: eat() missing 1 required positional argument: 'self'

    想让上面的代码可以正常工作有两种办法

    1. 调用时主动传递实例本身给eat方法,即d.eat(d) 

    2. 在eat方法中去掉self参数,但这也意味着,在eat中不能通过self.调用实例中的其它变量了

    class people(object):
        def __init__(self, name):
            self.name = name
    
        @staticmethod  # 把eat方法变为静态方法
        def eat():
            print("is eating" )
    
    p = people("tom")
    p.eat()

    2.类方法

    类方法通过@classmethod装饰器实现,类方法和普通方法的区别是, 类方法只能访问类变量,不能访问实例变量

    class people(object):
        def __init__(self, name):
            self.name = name
    
        @classmethod  # 类方法
        def eat(self):
            print("%s is eating"%self.name )
    
    p = people("tom")
    p.eat()

    执行报错如下,说people没有name属性,因为name是个实例变量,类方法是不能访问实例变量的

    Traceback (most recent call last):
      File "D:/pycharm/project/day6/静态方法.py", line 12, in <module>
        p.eat()
      File "D:/pycharm/project/day6/静态方法.py", line 9, in eat
        print("%s is eating"%self.name )
    AttributeError: type object 'people' has no attribute 'name'

    此时可以定义一个类变量,也叫name,看下执行效果

    class people(object):
        name = '我是类变量'
        def __init__(self, name):
            self.name = name
    
        @classmethod  # 类方法
        def eat(self):
            print("%s is eating"%self.name )
    
    p = people("tom")
    p.eat()
    #执行结果
    我是类变量 is eating

    三、属性

    通过上述Python类中的方法,Python中的属性是普通方法的变行。

    对于属性,有以下三个知识点:

    • 属性的基本使用
    • 属性的两种定义方式

    1.属性的基本使用

    # ############### 定义 ###############
    class people:
    
        def func(self):
            print('普通属性...')
    
        # 定义属性
        @property
        def prop(self):
            print('property属性调用..')
    # ############### 调用 ###############
    p = people()
    
    p.func()
    p.prop   #调用属性
    属性的定义及使用

    由属性的定义和调用要注意一下几点:

    • 定义时,在普通方法的基础上添加 @property 装饰器;
    • 定义时,属性仅有一个self参数
    • 调用时,无需括号
                 方法:p.func()
                 属性:p.prop

    注意:属性存在意义是:访问属性时可以制造出和访问字段完全相同的假象

            属性由方法变种而来,如果Python中没有属性,方法完全可以代替其功能

    2、属性的两种定义方式

    属性的定义有两种方式:

    • 装饰器 即:在方法上应用装饰器
    • 静态字段 即:在类中定义值为property对象的静态字段

    装饰器方式:在类的普通方法上应用@property装饰器

    经典类,具有一种@property装饰器

    # ############### 定义 ###############
    class people:
        # 定义属性
        @property
        def prop(self):
            return 'tom'
    # ############### 调用 ###############
    p = people()
    
    result = p.prop  # 自动执行 @property 修饰的 price 方法,并获取方法的返回值
    print(result)
    View Code

    新式类,具有三种@property装饰器

    class product(object):
    
        @property
        def price(self):
            print( '@property')
    
        @price.setter
        def price(self, value):
            print( '@price.setter')
    
        @price.deleter
        def price(self):
            print ('@price.deleter')
    
    # ############### 调用 ###############
    obj = product()
    
    obj.price          # 自动执行 @property 修饰的 price 方法,并获取方法的返回值
    
    obj.price = 123    # 自动执行 @price.setter 修饰的 price 方法,并将  123 赋值给方法的参数
    
    del obj.price      # 自动执行 @price.deleter 修饰的 price 方法
    View Code

    注:经典类中的属性只有一种访问方式,其对应被 @property 修饰的方法
           新式类中的属性有三种访问方式,并分别对应了三个被@property、@方法名.setter、@方法名.deleter修饰的方法

    由于新式类中具有三种访问方式,我们可以根据他们几个属性的访问特点,分别将三个方法定义为对同一个属性:获取、修改、删除

    class product(object):
    
        def __init__(self):
            # 原价
            self.original_price = 100
            # 折扣
            self.discount = 0.8
    
        @property
        def price(self):
            # 实际价格 = 原价 * 折扣
            new_price = self.original_price * self.discount
            return new_price
    
        @price.setter
        def price(self, value):
            self.original_price = value
    
        @price.deleter
        def price(self, value):
            del self.original_price
    
    obj = product()
    print(obj.price)         # 获取商品价格
    obj.price = 200   # 修改商品原价
    print(obj.original_price)
    # del obj.price     # 删除商品原价
    实例

    静态字段方式:创建值为property对象的静态字段

    当使用静态字段的方式创建属性时,经典类和新式类没有什么区别

    class people:
    
        def talk(self):
            return 'yu'
    
        TALK = property(talk)
    
    obj = people()
    reuslt = obj.TALK        # 自动调用talk方法,并获取方法的返回值
    print( reuslt)
    View Code

    property的构造方法中有个四个参数

    • 第一个参数是方法名,调用 对象.属性 时自动触发执行方法
    • 第二个参数是方法名,调用 对象.属性 = XXX 时自动触发执行方法
    • 第三个参数是方法名,调用 del 对象.属性 时自动触发执行方法
    • 第四个参数是字符串,调用 对象.属性.__doc__ ,此参数是该属性的描述信息
    class people:
    
        def get_bar(self):
            return 'yu'
    
        # *必须两个参数
        def set_bar(self, value):
            return 'set value' + value
    
        def del_bar(self):
            return 'yu'
    
        BAR=property(get_bar, set_bar, del_bar, 'description...')
    
    obj = people()
    
    print(obj.BAR)              # 自动调用第一个参数中定义的方法:get_bar
    obj.BAR = "hehe"    # 自动调用第二个参数中定义的方法:set_bar方法,并将“alex”当作参数传入
    del people.BAR       # 自动调用第三个参数中定义的方法:del_bar方法
    obj.BAR.__doc__      # 自动获取第四个参数中设置的值:description...
    View Code

     由于静态字段方式创建属性具有三种访问方式,我们可以根据他们几个属性的访问特点,分别将三个方法定义为对同一个属性:获取、修改、删除

    class product(object):
    
        def __init__(self):
            # 原价
            self.original_price = 100
            # 折扣
            self.discount = 0.8
    
        def get_price(self):
            # 实际价格 = 原价 * 折扣
            new_price = self.original_price * self.discount
            return new_price
    
        def set_price(self, value):
            self.original_price = value
    
        def del_price(self, value):
            del self.original_price
    
        PRICE = property(get_price, set_price, del_price, '价格属性描述...')
    
    obj = product()
    obj.PRICE         # 获取商品价格
    obj.PRICE = 200   # 修改商品原价
    del obj.PRICE     # 删除商品原价
    View Code

    所以,定义属性共有两种方式,分别是【装饰器】和【静态字段】,而【装饰器】方式针对经典类和新式类又有所不同。

    类成员的修饰符

    类的所有成员在上一步骤中已经做了详细的介绍,对于每一个类的成员而言都有两种形式:

    • 公有成员,在任何地方都能访问
    • 私有成员,只有在类的内部才能方法

    私有成员和公有成员的定义不同:私有成员命名时,前两个字符是下划线。(特殊成员除外,例如:__init__、__call__、__dict__等)

    class C:
     
        def __init__(self):
            self.name = '公有字段'
            self.__foo = "私有字段"

    私有成员和公有成员的访问限制不同

    静态字段

    • 公有静态字段:类可以访问;类内部可以访问;派生类中可以访问
    • 私有静态字段:仅类内部可以访问;
    class C:
    
        name = "公有静态字段"
    
        def func(self):
            print C.name
    
    class D(C):
    
        def show(self):
            print C.name
    
    
    C.name         # 类访问
    
    obj = C()
    obj.func()     # 类内部可以访问
    
    obj_son = D()
    obj_son.show() # 派生类中可以访问
    公有静态字段
    class C:
    
        __name = "公有静态字段"
    
        def func(self):
            print C.__name
    
    class D(C):
    
        def show(self):
            print C.__name
    
    
    C.__name       # 类访问            ==> 错误
    
    obj = C()
    obj.func()     # 类内部可以访问     ==> 正确
    
    obj_son = D()
    obj_son.show() # 派生类中可以访问   ==> 错误
    私有静态字段

    普通字段

    • 公有普通字段:对象可以访问;类内部可以访问;派生类中可以访问
    • 私有普通字段:仅类内部可以访问;

    ps:如果想要强制访问私有字段,可以通过 【对象._类名__私有字段明 】访问(如:obj._C__foo),不建议强制访问私有成员。

    class C:
        def __init__(self):
            self.foo = "公有字段"
    
        def func(self):
            print( self.foo) # 类内部访问
    
    class D(C):
        def show(self):
            print( self.foo) #派生类中访问
    
    obj = C()
    obj.foo  # 通过对象访问
    obj.func()  # 类内部访问
    obj_son = D()
    obj_son.show()  # 派生类中访问
    公有字段
    class C:
        def __init__(self):
            self.__foo = "私有字段"
    
        def func(self):
            print(self.foo ) # 类内部访问
    
    class D(C):
        def show(self):
            print(self.foo) #派生类中访问
    
    obj = C()
    
    #obj.__foo  # 通过对象访问    ==> 错误
    obj.func()  # 类内部访问        ==> 正确
    
    obj_son = D()
    #obj_son.show()  # 派生类中访问  ==> 错误
    私有字段

    方法、属性的访问于上述方式相似,即:私有成员只能在类内部使用

    ps:非要访问私有属性的话,可以通过 对象._类__属性名

    类的特殊成员

    上文介绍了Python的类成员以及成员修饰符,从而了解到类中有字段、方法和属性三大类成员,并且成员名前如果有两个下划线,则表示该成员是私有成员,私有成员只能由类内部调用。无论人或事物往往都有不按套路出牌的情况,Python的类成员也是如此,存在着一些具有特殊含义的成员,详情如下:

    1. __doc__

         表示类的描述信息

    class Foo:
        """ 描述类信息 """
    
        def func(self):
            pass
    
    print Foo.__doc__
    #输出:描述类信息
    View Code

    2. __module__ 和  __class__ 

      __module__ 表示当前操作的对象在那个模块

      __class__     表示当前操作的对象的类是什么

    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    
    class C:
    
        def __init__(self):
            self.name = 'yu'
    lib/aa.py
    from lib.aa import C
    
    obj = C()
    print obj.__module__  # 输出 lib.aa,即:输出模块
    print obj.__class__      # 输出 lib.aa.C,即:输出类
    index.py

    3. __init__

      构造方法,通过类创建对象时,自动触发执行。

    class Foo:
    
        def __init__(self, name):
            self.name = name
            self.age = 18
    
    
    obj = Foo('wupeiqi') # 自动执行类中的 __init__ 方法
    View Code

    4. __del__

      析构方法,当对象在内存中被释放时,自动触发执行。

    注:此方法一般无须定义,因为Python是一门高级语言,程序员在使用时无需关心内存的分配和释放,因为此工作都是交给Python解释器来执行,所以,析构函数的调用是由解释器在进行垃圾回收时自动触发执行的。

    class Foo:
    
        def __del__(self):
            pass
    View Code

    5. __call__

      对象后面加括号,触发执行。

    注:构造方法的执行是由创建对象触发的,即:对象 = 类名() ;而对于 __call__ 方法的执行是由对象后加括号触发的,即:对象() 或者 类()()

    class Foo:
    
        def __init__(self):
            pass
        
        def __call__(self, *args, **kwargs):
    
            print( '__call__')
    
    
    obj = Foo() # 执行 __init__
    obj()       # 执行 __call__
    View Code

    6. __dict__

      类或对象中的所有成员

    上文中我们知道:类的普通字段属于对象;类中的静态字段和方法等属于类,即:

    class Province:
    
        country = 'China'
    
        def __init__(self, name, count):
            self.name = name
            self.count = count
    
        def func(self, *args, **kwargs):
            print( 'func')
    
    # 获取类的成员,即:静态字段、方法、
    print(Province.__dict__)
    # 输出:{'__doc__': None, '__init__': <function Province.__init__ at 0x0000025AFBF7E1E0>, 'country': 'China', '__dict__': <attribute '__dict__' of 'Province' objects>, '__weakref__': <attribute '__weakref__' of 'Province' objects>, '__module__': '__main__', 'func': <function Province.func at 0x0000025AFBF7E268>}
    
    
    obj1 = Province('HeBei',10000)
    print(obj1.__dict__)
    # 获取 对象obj1 的成员
    # 输出:{'count': 10000, 'name': 'HeBei'}
    
    obj2 = Province('HeNan', 3888)
    print(obj2.__dict__)
    # 获取 对象obj1 的成员
    # 输出:{'count': 3888, 'name': 'HeNan'}
    View Code

     7. __str__

      如果一个类中定义了__str__方法,那么在打印 对象 时,默认输出该方法的返回值。

    class Foo:
    
        def __str__(self):
            return 'yu'
    
    
    obj = Foo()
    print(obj)
    # 输出:yu
    View Code

    8、__getitem__、__setitem__、__delitem__

    用于索引操作,如字典。以上分别表示获取、设置、删除数据

    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
     
    class Func(object):
     
        def __getitem__(self, key):
            print '__getitem__',key
     
        def __setitem__(self, key, value):
            print '__setitem__',key,value
     
        def __delitem__(self, key):
            print '__delitem__',key
     
     
    obj = Func()
     
    result = obj['k1']      # 自动触发执行 __getitem__
    obj['k2'] = 'wupeiqi'   # 自动触发执行 __setitem__
    del obj['k1']           # 自动触发执行 __delitem__
    View Code

    9、__getslice__、__setslice__、__delslice__

     该三个方法用于分片操作,如:列表

    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
     
    class Foo(object):
     
        def __getslice__(self, i, j):
            print '__getslice__',i,j
     
        def __setslice__(self, i, j, sequence):
            print '__setslice__',i,j
     
        def __delslice__(self, i, j):
            print '__delslice__',i,j
     
    obj = Foo()
     
    obj[-1:1]                   # 自动触发执行 __getslice__
    obj[0:1] = [11,22,33,44]    # 自动触发执行 __setslice__
    del obj[0:2]                # 自动触发执行 __delslice__
    View Code

    10. __iter__ 

    用于迭代器,之所以列表、字典、元组可以进行for循环,是因为类型内部定义了 __iter__

    class Foo(object):
        pass
    
    
    obj = Foo()
    
    for i in obj:
        print i
        
    # 报错:TypeError: 'Foo' object is not iterable
    第一步
    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    
    class Foo(object):
        
        def __iter__(self):
            pass
    
    obj = Foo()
    
    for i in obj:
        print i
    
    # 报错:TypeError: iter() returned non-iterator of type 'NoneType'
    第二步
    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    
    class Foo(object):
    
        def __init__(self, sq):
            self.sq = sq
    
        def __iter__(self):
            return iter(self.sq)
    
    obj = Foo([11,22,33,44])
    
    for i in obj:
        print i
    第三步

    以上步骤可以看出,for循环迭代的其实是  iter([11,22,33,44]) ,所以执行流程可以变更为:

    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
     
    obj = iter([11,22,33,44])
     
    for i in obj:
        print i
    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    
    obj = iter([11,22,33,44])
    
    while True:
        val = obj.next()
        print val
    for循环语法内部

    上述代码中,obj 是通过 Foo 类实例化的对象,其实,不仅 obj 是一个对象,Foo类本身也是一个对象,因为在Python中一切事物都是对象

    如果按照一切事物都是对象的理论:obj对象是通过执行Foo类的构造方法创建,那么Foo类对象应该也是通过执行某个类的 构造方法 创建。

    print type(obj) # 输出:<class '__main__.Foo'>     表示,obj 对象由Foo类创建
    print type(Foo) # 输出:<type 'type'>              表示,Foo类对象由 type 类创建

    所以,obj对象是Foo类的一个实例Foo类对象是 type 类的一个实例,即:Foo类对象 是通过type类的构造方法创建。

    那么,创建类就可以有两种方式:

    a). 普通方式

    class Foo(object):
     
        def func(self):
            print 'hello World"

    b).特殊方式(type类的构造函数)

    def func(self):
        print 'hello World'
     
    Foo = type('Foo',(object,), {'func': func})
    #type第一个参数:类名
    #type第二个参数:当前类的基类
    #type第三个参数:类的成员

    ==》 类 是由 type 类实例化产生

    那么问题来了,类默认是由 type 类实例化产生,type类中如何实现的创建类?类又是如何创建对象?

    答:类中有一个属性 __metaclass__,其用来表示该类由 谁 来实例化创建,所以,我们可以为 __metaclass__ 设置一个type类的派生类,从而查看 类 创建的过程。

  • 相关阅读:
    日期格式,Popup的使用方法,RenderTransform与LayoutTransform的区别
    Status 网络
    以太坊: RLP 编码原理
    Merkle Patricia Tree 梅克尔帕特里夏树(MPT)详细介绍
    【转】货币的未来取决于打破关于货币历史的虚构谎言
    区块链上的保险
    Trustlines Network:以太坊上实现 Ripple 瑞波协议
    通过 BTC Relay 来实现链与链的连接
    PoW模式下交易平均要35秒,为什么为拥堵
    使用以太坊和 Metamask 再也不需要输入密码
  • 原文地址:https://www.cnblogs.com/Young111/p/9463490.html
Copyright © 2011-2022 走看看