Description
小 A 和小 B 决定利用假期外出旅行,他们将想去的城市从 1 到 N 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i 的海拔高度为Hi,城市 i 和城市 j 之间的距离 d[i,j]恰好是这两个城市海拔高度之差的绝对值,即d[i,j] = |Hi− Hj|。 旅行过程中,小 A 和小 B 轮流开车,第一天小 A 开车,之后每天轮换一次。他们计划选择一个城市 S 作为起点,一直向东行驶,并且最多行驶 X 公里就结束旅行。小 A 和小 B的驾驶风格不同,小 B 总是沿着前进方向选择一个最近的城市作为目的地,而小 A 总是沿着前进方向选择第二近的城市作为目的地(注意:本题中如果当前城市到两个城市的距离相同,则认为离海拔低的那个城市更近)。如果其中任何一人无法按照自己的原则选择目的城市,或者到达目的地会使行驶的总距离超出 X 公里,他们就会结束旅行。
在启程之前,小 A 想知道两个问题:
-
对于一个给定的 X=X0,从哪一个城市出发,小 A 开车行驶的路程总数与小 B 行驶的路程总数的比值最小(如果小 B 的行驶路程为 0,此时的比值可视为无穷大,且两个无穷大视为相等)。如果从多个城市出发,小 A 开车行驶的路程总数与小 B 行驶的路程总数的比值都最小,则输出海拔最高的那个城市。
- 对任意给定的 X=Xi和出发城市 Si,小 A 开车行驶的路程总数以及小 B 行驶的路程总数。
Input
第一行包含一个整数 N,表示城市的数目。
第二行有 N 个整数,每两个整数之间用一个空格隔开,依次表示城市 1 到城市 N 的海拔高度,即 H1,H2,……,Hn,且每个 Hi都是不同的。
第三行包含一个整数 X0。
第四行为一个整数 M,表示给定 M 组 Si和 Xi。
接下来的 M 行,每行包含 2 个整数 Si和 Xi,表示从城市 Si出发,最多行驶 Xi公里。
Output
输出共 M+1 行。
第一行包含一个整数 S0,表示对于给定的 X0,从编号为 S0的城市出发,小 A 开车行驶的路程总数与小 B 行驶的路程总数的比值最小。
接下来的 M 行,每行包含 2 个整数,之间用一个空格隔开,依次表示在给定的 Si和
Xi下小 A 行驶的里程总数和小 B 行驶的里程总数。
Range
对于30%的数据,有1≤N≤20,1≤M≤20;
对于40%的数据,有1≤N≤100,1≤M≤100;
对于50%的数据,有1≤N≤100,1≤M≤1,000;
对于70%的数据,有1≤N≤1,000,1≤M≤10,000;
对于100%的数据,有1≤N≤100,000,1≤M≤100,000,-1,000,000,000≤Hi≤1,000,000,000,0≤X0≤1,000,000,000,1≤Si≤N,0≤Xi≤1,000,000,000,数据保证Hi 互不相同。
Solution
神tm全世界就我一个被卡空间了?倍增优化dp。
这题难就难在预处理。
首先预处理出 A 和 B 每个人从一个城市出发的目标是哪个城市。可以用平衡树找一个点的前驱和后继,或者双向链表。我当然选择了最偷懒的 set。(upd:这里如果用 set 的话有可能迭代器一直加或者减导致越界,又懒得判断,索性用了 multiset)
然后预处理出 f[i][j][k(0/1)] 表示第 k 个人从第 i 个城市出发走 2^j 天到达的城市,同时也更新 dp[x(0/1)][i][j][k(0/1)] 表示第 k 个人从第 i 个城市出发走 2^j 天后第 x 个人走了多少路程。
最后预处理完暴力跑几遍就行了。
Code
// By YoungNeal #include<set> #include<cmath> #include<cctype> #include<cstdio> #include<algorithm> #define N 100005 #define INF 1234567890000 using namespace std; int n; int starx; int height[N]; int f[N][20][5]; int dp1[N][20][3],dp2[N][20][3]; struct Node{ int idx,data; friend bool operator<(Node a,Node b){ return a.data<b.data; } }; multiset<Node> s; void calc(int S,int &a,int &b,int x){ int now=S; for(int k=18;~k;k--){ if(f[now][k][0]&&a+b+dp1[now][k][0]+dp2[now][k][0]<=x){ a+=dp1[now][k][0]; b+=dp2[now][k][0]; now=f[now][k][0]; } } } signed main(){ scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&height[i]); Node a; height[0]=2e9;height[n+1]=-2e9; a.idx=0;a.data=2e9;s.insert(a);s.insert(a); a.idx=n+1;a.data=-2e9;s.insert(a);s.insert(a); for(int i=n;i;i--){ int goa,gob; Node aa; aa.idx=i,aa.data=height[i]; s.insert(aa); set<Node>::iterator it=s.lower_bound(aa); int pre,nxt; int preh,nxth; it++; nxt=(*it).idx; nxth=(*it).data; //printf("nxt=%d ",nxt); it--;it--; pre=(*it).idx; preh=(*it).data; //printf("pre=%d ",pre); it++; //printf("idx=%d ",(*it).idx); //for(set<Node>::iterator iit=s.begin();iit!=s.end();iit++) printf("data=%d,idx=%d ",(*iit).data,(*iit).idx); if(abs(nxth-height[i])>=abs(preh-height[i])){ gob=pre; it--;it--; if(abs(nxth-height[i])>=abs((*it).data-height[i])) goa=(*it).idx; else goa=nxt; } else{ gob=nxt; it++;it++; if(abs(preh-height[i])>abs((*it).data-height[i])) goa=(*it).idx; else goa=pre; /*printf("pre=%d,it=%d,nxt=%d ",pre,(*it).idx,nxt); printf("preh=%d,nxth=%d,data=%d ",preh,nxth,(*it).data); printf("i=%d,gob=%d,goa=%d ",i,gob[i],goa[i]);*/ } f[i][0][0]=goa; f[i][0][1]=gob; dp1[i][0][0]=abs(height[i]-height[goa]); dp1[i][1][0]=dp1[i][0][0]; dp2[i][0][1]=abs(height[i]-height[gob]); dp2[i][1][1]=dp2[i][0][1]; //while(1); }//0->A 1->B dp[i][j][k][p]->from i drive 2^j first is k distance p go for(int i=1;i<=n;i++){ f[i][1][0]=f[f[i][0][0]][0][1]; dp1[i][1][0]=dp1[i][0][0]; dp2[i][1][0]=abs(height[f[i][1][0]]-height[f[i][0][0]]); f[i][1][1]=f[f[i][0][1]][0][0]; dp2[i][1][1]=dp2[i][0][1]; dp1[i][1][1]=abs(height[f[i][1][1]]-height[f[i][0][1]]); //printf("from %d drive 2^%d first is %d distance %d go to %d ",i,0,0,0,f[i][0][0]); //printf("from %d drive 2^%d first is %d distance %d go to %d ",i,0,1,1,f[i][0][1]); //printf("from %d drive 2^%d first is %d distance %d go to %d ",i,1,0,0,f[i][1][0]); //printf("from %d drive 2^%d first is %d distance %d go to %d ",i,1,1,1,f[i][1][1]); } for(int k=2;k<=18;k++){ for(int i=1;i<=n;i++){ f[i][k][1]=f[f[i][k-1][1]][k-1][1]; dp2[i][k][1]=dp2[f[i][k-1][1]][k-1][1]+dp2[i][k-1][1]; dp1[i][k][1]=dp1[i][k-1][1]+dp1[f[i][k-1][1]][k-1][1]; f[i][k][0]=f[f[i][k-1][0]][k-1][0]; dp1[i][k][0]=dp1[i][k-1][0]+dp1[f[i][k-1][0]][k-1][0]; dp2[i][k][0]=dp2[i][k-1][0]+dp2[f[i][k-1][0]][k-1][0]; //printf("from %d drive 2^%d first is %d distance %d go to %d ",i,k,0,0,f[i][k][0]); //printf("from %d drive 2^%d first is %d distance %d go to %d ",i,k,1,1,f[i][k][1]); //printf("from %d drive 2^%d first is %d distance %d go %d ",i,k,0,0,dp[i][k][0][0]); //printf("from %d drive 2^%d first is %d distance %d go %d ",i,k,1,1,dp[i][k][1][1]); } } scanf("%d",&starx); double ans=INF*10.0; int idx; for(int i=1;i<=n;i++){ int la=0,lb=0; calc(i,la,lb,starx); //printf("la=%d,lb=%d ",la,lb); if(!lb){ if(ans>INF) ans=INF,idx=i; else if(ans==INF&&height[idx]<height[i]) idx=i; } else{ double now=(double)la/(double)lb; if(now<ans) ans=now,idx=i; else if(now==ans&&height[idx]<height[i]) idx=i; } } printf("%d ",idx); int T; scanf("%d",&T); while(T--){ int a,b; int la=0,lb=0; scanf("%d%d",&a,&b); calc(a,la,lb,b); printf("%d %d ",la,lb); } return 0; }