zoukankan      html  css  js  c++  java
  • 另一种保证单次插入回文自动机复杂度的做法

    对于插入一个字符串,普通回文自动机复杂度是均摊的。
    对于单次插入复杂度有证明的回文自动机插入,
    (sum)为字符集大小,翁文涛的论文里提到了单次插入(O(sum))的记忆化,从理论上来说,可以通过主席树优化到(O(logsum)),但是代码量就增加了,而且对于26的字符集,这样写应该会变慢吧。
    翻金策字符串算法选讲的时候,偶然发现了一个浅显的结论,回文串的border等价于它的后缀回文串。
    那么这就好办了,直接利用border的性质,将暴力往上跳找fa改为一次跳一个等差数列找fa就好了。

    int p=-1;
    while (r-T[la].len-1<l||s[r-T[la].len-1]!=s[r]){
    	if (p!=T[la].d){
    		p=T[la].d;
    		la=T[la].fa;
    	}
    	else la=T[T[la].df].fa;
    }
    

    其中(T[la].d)为他和他父亲(len)的差值,(T[la].df)为他所在(len)等差数列的祖先,由border的性质,这样单次插入最多跳(log(n))次,同时不影响总的均摊复杂度。虽然单次插入复杂度不如论文中的算法,但是不需要维护过多其他信息,只需要维护十分有用的等差数列就可以了。
    这样,如果回文自动机上的转移边用hash存储,就可以得到一个单次插入(O(log(n))),插入字符串均摊复杂度(O(n)),空间(O(n))的做法。

  • 相关阅读:
    NYOJ 1073 最大值 (模拟)
    NYOJ 1063 生活的烦恼 (二叉树)
    NYOJ 1022 合纵连横 (并查集)
    [leetcode-553-Optimal Division]
    [leetcode-496-Next Greater Element I]
    [leetcode-556-Next Greater Element III]
    [leetcode-500-Keyboard Row]
    [leetcode-36-Valid Sudoku]
    [leetcode-127-Word Ladder]
    [leetcode-567-Permutation in String]
  • 原文地址:https://www.cnblogs.com/Yuhuger/p/10110432.html
Copyright © 2011-2022 走看看