Problem Description
In graph theory, the complement of a graph G is a graph H on the same vertices such that two distinct vertices of H are adjacent if and only if they are not adjacent in G.
Now you are given an undirected graph G of N nodes and M bidirectional edges of unit length. Consider the complement of G, i.e., H. For a given vertex S on H, you are required to compute the shortest distances from S to all N−1 other vertices.
Input
There are multiple test cases. The first line of input is an integer T(1≤T<35) denoting the number of test cases. For each test case, the first line contains two integers N(2≤N≤200000) and M(0≤M≤20000). The following M lines each contains two distinct integers u,v(1≤u,v≤N) denoting an edge. And S (1≤S≤N) is given on the last line.
Output
For each of T test cases, print a single line consisting of N−1 space separated integers, denoting shortest distances of the remaining N−1 vertices from S (if a vertex cannot be reached from S, output ``-1" (without quotes) instead) in ascending order of vertex number.
Sample Input
1
2 0
1
Sample Output
1
/** @Date : 2016-11-14-17.20
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version :
*/
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <queue>
#define pii pair<int , int>
#define MP(x, y) make_pair((x) ,(y))
#define ff first
#define ss second
#define LL long long
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 2e5+20;
map<pii ,bool>mp;
set<int>st;
set<int>::iterator it;
int res[N];
int n, m;
void bfs(int s,int n)
{
queue<int>q, t;
res[s] = 0;
q.push(s);
st.erase(s);
while(!q.empty())
{
int nw = q.front();
//cout << nw;
q.pop();
for(it = st.begin(); it != st.end(); it++)
{
//cout << "~"<< *it << " " ;
if(!mp[MP(nw, *it)])
{
res[*it] = res[nw] + 1;
q.push(*it);
t.push(*it);
//st.erase(*it);//不能直接删会有问题
//if(st.empty())
//break;
}
}
while(!t.empty())
{
int x = t.front();
t.pop();
st.erase(x);
}
//cout << endl;
}
}
int main()
{
int T;
while(~scanf("%d", &T))
{
while(T--)
{
mp.clear();
st.clear();
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++)
st.insert(i);
while(m--)
{
int x, y;
scanf("%d%d", &x, &y);
mp[MP(x, y)] = mp[MP(y, x)] = 1;
}
int s;
scanf("%d", &s);
bfs(s, n);
////
int flag = 0;
for(int i = 1; i <= n; i++)
{
if(i != s)
{
if(flag)
printf(" ");
if(res[i] != 0)
printf("%d", res[i]);
else printf("-1");
flag = 1;
}
}
printf(" ");
}
}
return 0;
}
/*
99
6 9
1 3
1 4
2 3
2 4
2 5
3 5
3 6
4 6
5 6
1
*/