zoukankan      html  css  js  c++  java
  • POJ 3666 Making the Grade DP

    Description

    A straight dirt road connects two fields on FJ's farm, but it changes elevation more than FJ would like. His cows do not mind climbing up or down a single slope, but they are not fond of an alternating succession of hills and valleys. FJ would like to add and remove dirt from the road so that it becomes one monotonic slope (either sloping up or down).

    You are given N integers A1, ... , AN (1 ≤ N ≤ 2,000) describing the elevation (0 ≤ Ai ≤ 1,000,000,000) at each of N equally-spaced positions along the road, starting at the first field and ending at the other. FJ would like to adjust these elevations to a new sequence B1, . ... , BN that is either nonincreasing or nondecreasing. Since it costs the same amount of money to add or remove dirt at any position along the road, the total cost of modifying the road is

    |AB1| + |AB2| + ... + |AN - BN |

    Please compute the minimum cost of grading his road so it becomes a continuous slope. FJ happily informs you that signed 32-bit integers can certainly be used to compute the answer.

    Input

    * Line 1: A single integer: N
    * Lines 2..N+1: Line i+1 contains a single integer elevation: Ai

    Output

    * Line 1: A single integer that is the minimum cost for FJ to grade his dirt road so it becomes nonincreasing or nondecreasing in elevation.

    Sample Input

    7
    1
    3
    2
    4
    5
    3
    9
    

    Sample Output

    3
    

    Source

     

    题意:将一个序列变为不递减或不递增序列的最小花费。

    思路:由于题目要求并不是严格递增或递减,那么可以想到将一个数变化的最少花费肯定是变为数列中已有的第一个比它大或比它小的数。所以先排序,dp[i][j]代表选取到第i个,最后一位(最大)的是第a[j]的最小花费,转移方程为 dp[i][j] = min(dp[i-1][1~j]) + |a[i]-b[j]|。

    /** @Date    : 2016-11-03-18.59
      * @Author  : Lweleth (SoungEarlf@gmail.com)
      * @Link    : https://github.com/
      * @Version :
      */
    #include <stdio.h>
    #include <iostream>
    #include <string.h>
    #include <algorithm>
    #include <utility>
    #include <vector>
    #include <map>
    #include <set>
    #include <math.h>
    #include <string>
    #include <stack>
    #include <queue>
    #define LL long long
    #define MMF(x) memset((x),0,sizeof(x))
    #define MMI(x) memset((x), INF, sizeof(x))
    using namespace std;
    
    const int INF = 0x3f3f3f3f;
    const int N = 1e5+2000;
    
    int dp[2010][2010];
    int a[2010];
    int b[2010];
    int main()
    {
    
        int n;
        while(cin >> n)
        {
            for(int i = 1; i <= n; i++)
            {
                scanf("%d", a + i);
                b[i] = a[i];
            }
            sort(b + 1, b + n + 1);
            a[0] = 0;
            int ans = INF, ans1 = INF;
            int mi, mii;
    
            for(int i = 0; i<= n; i++)
            {
                mi = INF;
                for(int j = 1; j <= n; j++)
                {
                    if(i)
                    {
                        dp[i][j] = INF;
                        dp[i][j] = min(dp[i-1][j], mi) + abs(a[i] - b[j]);
                        if(mi > dp[i-1][j])
                            mi = dp[i-1][j];
                        if(i == n)
                            ans = min(dp[n][j],ans);//注意这里取最小值
                    }
                    else dp[i][j] = 0;
                }
            }
            for(int i = 0; i<= n; i++)
            {
                mii = INF;
                for(int j = 1; j <= n; j++)
                {
                    if(i)
                    {
                        dp[i][j] = INF;
                        dp[i][j] = min(dp[i-1][j], mii) + abs(a[i] - b[n-j+1]);
                        if(mii > dp[i-1][j])
                            mii = dp[i-1][j];
                        if(i == n)
                            ans1 = min(dp[n][j],ans1);//注意这里取最小值
                    }
                    else dp[i][j] = 0;
                }
            }
            for(int i = 1; i <= n; i++)
                ans1 = min(dp[n][i],ans1);
    
            printf("%d
    ", min(ans,ans1));
        }
        return 0;
    }
    
  • 相关阅读:
    设计一个洗牌的程序?就是将这副牌进行随机交换
    STL中vector,Map,Set的实现原理
    实现一个Memcpy函数:将源指针所指的区域从起始地址开始的n个字节复制到目的指针所指区域
    四个名词(很常见):虚拟内存,虚拟内存地址(线性地址),物理内存,物理内存地址,逻辑地址
    进程的状态
    ubuntu VNC中Xfce4中Tab键失效的解决方法
    GPU安装
    Parted 手册
    opesntack 底层共享存储 迁移配置
    mysql主从同步
  • 原文地址:https://www.cnblogs.com/Yumesenya/p/6109106.html
Copyright © 2011-2022 走看看