zoukankan      html  css  js  c++  java
  • POJ 3304 Segments 基础线段交判断

    LINK

    题意:询问是否存在直线,使得所有线段在其上的投影拥有公共点

    思路:如果投影拥有公共区域,那么从投影的公共区域作垂线,显然能够与所有线段相交,那么题目转换为询问是否存在直线与所有线段相交。判断相交先求叉积再用跨立实验。枚举每个线段的起始结束点作为直线起点终点遍历即可。

    /** @Date    : 2017-07-12 14:35:44
      * @FileName: POJ 3304 基础线段交判断.cpp
      * @Platform: Windows
      * @Author  : Lweleth (SoungEarlf@gmail.com)
      * @Link    : https://github.com/
      * @Version : $Id$
      */
    #include <stdio.h>
    #include <iostream>
    #include <string.h>
    #include <algorithm>
    #include <utility>
    #include <vector>
    #include <map>
    #include <set>
    #include <string>
    #include <stack>
    #include <queue>
    #include <math.h>
    //#include <bits/stdc++.h>
    #define LL long long
    #define PII pair<int ,int>
    #define MP(x, y) make_pair((x),(y))
    #define fi first
    #define se second
    #define PB(x) push_back((x))
    #define MMG(x) memset((x), -1,sizeof(x))
    #define MMF(x) memset((x),0,sizeof(x))
    #define MMI(x) memset((x), INF, sizeof(x))
    using namespace std;
    
    const int INF = 0x3f3f3f3f;
    const int N = 1e5+20;
    const double eps = 1e-8;
    
      
    struct point  
    {  
        double x, y;  
        point(double _x, double _y){x = _x, y = _y;}
        point(){}
        point operator -(const point &b) const
    	{
    		return point(x - b.x, y - b.y);
    	}
    	double operator *(const point &b) const 
    	{
    		return x * b.x + y * b.y;
    	}
    	double operator ^(const point &b) const
    	{
    		return x * b.y - y * b.x;
    	}
    };  
      
    struct line
    {
    	point s, t;
    	line(){}
    	line(point ss, point tt){s = ss, t = tt;}
    };
    
    double cross(point a, point b)
    {
    	return a.x * b.y - a.y * b.x;
    }
    
    double xmult(point p1, point p2, point p0)  
    {  
        return (p1 - p0) ^ (p2 - p0);  
    }  
    
    double distc(point a, point b)
    {
    	return sqrt((b - a) * (b - a));
    }
    
    bool opposite(point p1, point p2, line l)
    {
    	double t = xmult(l.s, l.t, p1) * xmult(l.s, l.t, p2);
    	printf("%.8lf
    ", t);
    	return xmult(l.s, l.t, p1) * xmult(l.s, l.t, p2) < -eps;
    }
    
    //线段与线段交
    bool Sjudgeinter(line a, line b)
    {
    	return opposite(b.s, b.t, a) && opposite(a.s, a.t, b);
    }
    
    int sign(double x)
    {
    	if(fabs(x) < eps)
    		return 0;
    	if(x < 0)
    		return -1;
    	return 1;
    }
    //线段与直线交 a为直线
    bool judgeinter(line a, line b)
    {
    	//return opposite(b.s, b.t, a);
    	/*double x = xmult(a.s, a.t, b.s);
    	double y = xmult(a.s, a.t, b.t);
    	printf("@%.4lf %.4lf
    ", x, y);*/
    	return sign(xmult(a.s, a.t, b.s)) * sign(xmult(a.s, a.t, b.t)) <= 0;
    }
    
    int n;
    point p[200];
    line l[200];
    bool check(line li)
    {
    	if(sign(distc(li.s, li.t)) == 0)
    		return 0;
    	for(int i = 0; i < n; i++)
    		if(judgeinter(li, l[i]) == 0)
    			return 0;
    	return 1;
    }
    
    int main()
    {
    	int T;
    	cin >> T;
    	while(T--)
    	{
    		scanf("%d", &n);
    		for(int i = 0; i < n; i++)
    		{
    			double x1, x2, y1, y2;
    			scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
    			p[i] = point(x1, y1), p[i + 1] = point(x2, y2);
    			l[i] = line(p[i], p[i + 1]);
    		}
    		int ans = 0;
    		/*for(int i = 0; i < n * 2; i++)//不知道为啥直接枚举所有点就是WA
    		{
    			for(int j = 0; j < n * 2; j++)
    			{
    				if(ans)
    					break;
    				if(i == j || distc(p[i],p[j]) < eps)
    					continue;
    				line tmp = line(p[i], p[j]);
    				if(p[i].x == p[j].x && p[i].y == p[j].y)//考虑到枚举直线为重合点
    					continue;
    				int flag = 0;
    				for(int k = 0; k < n; k++)
    				{
    					if(k == 1)
    						printf("**");
    					if(judgeinter(tmp, l[k]) == 0)
    					{
    						flag = 1;
    						break;
    					}
    
    				}
    				if(!flag)
    					ans = 1;
    			cout << i << "~"<< j << endl;
    			}
    		}*/
    		for(int i = 0; i < n; i++)
    		{
    			for(int j = 0; j < n; j++)
    			{
    				if(check(line(l[i].s, l[j].s))
    				|| check(line(l[i].s,l[j].t))
    				|| check(line(l[i].t, l[j].s))
    				|| check(line(l[i].t, l[j].t)) )
    				{
    					ans = 1;
    					break;
    				}
    			}
    		}
    		printf("%s
    ", ans?"Yes!":"No!");
    	}
        return 0;
    }
    //询问是否存在直线,使得所有线段在其上的投影拥有公共点
    //如果存在公共区域,对其作垂线,那么其垂线必定过所有的线段
    //那么转换为是否存在直线 与所有线段都相交
    
  • 相关阅读:
    【网络编程3】网络编程基础-arp请求(局域网主机扫描)
    【CTF MISC】隐写术wireshark找出图片-“强网杯”网络安全挑战赛writeup
    【网络编程2】网络编程基础-发送ICMP包(Ping程序)
    【网络编程1】网络编程基础-TCP、UDP编程
    【漏洞分析】两个例子-数组溢出修改返回函数与strcpy覆盖周边内存地址
    【Python】zip文件密码破解
    【bzoj1923】[Sdoi2010]外星千足虫 高斯消元
    spring cloud zuul在使用中遇到的坑 : 转发时自动去掉prefix
    Eclipse MAT:浅堆 vs 保留堆
    Java SDK夯住(Hang)问题排查
  • 原文地址:https://www.cnblogs.com/Yumesenya/p/7189940.html
Copyright © 2011-2022 走看看