有询问$a,b,c$,求a到c路径上,同时是a到b路径的点的个数。其中询问中的a,b,c可任意选择作为起点或终点,求一组询问中最大值。
LCA用于计算树上点对间距离,对于一组询问求深度最大的点作为起点,再在其中找最大距离的点就可以了
/** @Date : 2017-08-04 20:17:42 * @FileName: D LCA.cpp * @Platform: Windows * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : $Id$ */ #include <bits/stdc++.h> #define LL long long #define PII pair #define MP(x, y) make_pair((x),(y)) #define fi first #define se second #define PB(x) push_back((x)) #define MMG(x) memset((x), -1,sizeof(x)) #define MMF(x) memset((x),0,sizeof(x)) #define MMI(x) memset((x), INF, sizeof(x)) using namespace std; const int INF = 0x3f3f3f3f; const int N = 1e5+20; const double eps = 1e-8; int n, q; vectoredg[N]; int deg[N]; int fa[N][20]; void init() { for(int j = 1; (1 << j) <= n; j++) { for(int i = 1; i <= n; i++) { fa[i][j] = fa[fa[i][j - 1]][j - 1]; } } } void dfs(int x, int pre, int dep) { deg[x] = dep; for(auto i: edg[x]) { if(i == pre) continue; fa[i][0] = x; dfs(i, x, dep + 1); } } int lca(int a, int b) { if(deg[a] > deg[b]) swap(a, b); int det = deg[b] - deg[a]; for(int i = 0; (1 << i) <= det; i++) { if((1 << i) & det) b = fa[b][i]; } if(a == b) return a; for(int i = 19; i >= 0; i--) { if(fa[a][i] == fa[b][i]) continue; a = fa[a][i]; b = fa[b][i]; } return fa[a][0]; } int dis(int a, int b) { return deg[a] + deg[b] - 2 * deg[lca(a, b)]; } int main() { while(cin >> n >> q) { for(int i = 2; i <= n; i++) { int x; scanf("%d", &x); edg[x].PB(i); edg[i].PB(x); } dfs(1, -1, 0); init(); while(q--) { int x, y, z; scanf("%d%d%d", &x, &y, &z); int f1 = lca(x, y); int f2 = lca(x, z); int f3 = lca(y, z); if(deg[f1] < deg[f2]) f1 = f2; if(deg[f1] < deg[f3]) f1 = f3; int ans = max(dis(f1, x), max(dis(f1, y), dis(f1, z))); printf("%d ", ans + 1); } } return 0; }