zoukankan      html  css  js  c++  java
  • atcoder #082 E 暴力 计算几何

    给出点集,然后求一个凸包的所有的子凸包的贡献总和,贡献计算是凸包内部含边界上点的数量N,凸包的不包含边界的顶点数S,贡献为$2^{N-S}$

    首先很容易想到,凸包上包含内部的所有点构成的子凸包有Sum(i = 3 ->N)C(i,N)种情况,这个式子其实就是二项式的一部分。但是有可能出现多点共线的不合法情况,所以问题转换为求所有点构成的直线中,每条直线上大于2点的点的数目,每条直线都要分别计算,最后减去就行了。求共线可以用叉积可以用斜率,注意判重。

    这场比赛迟了10分钟才写,这题开始还在用凸包搞,简直蠢(

    /** @Date    : 2017-09-02 20:30:47
      * @FileName: C.cpp
      * @Platform: Windows
      * @Author  : Lweleth (SoungEarlf@gmail.com)
      * @Link    : https://github.com/
      * @Version : $Id$
      */
    #include <bits/stdc++.h>
    #define LL long long
    #define PII pair<int ,int>
    #define MP(x, y) make_pair((x),(y))
    #define fi first
    #define se second
    #define PB(x) push_back((x))
    #define MMG(x) memset((x), -1,sizeof(x))
    #define MMF(x) memset((x),0,sizeof(x))
    #define MMI(x) memset((x), INF, sizeof(x))
    using namespace std;
    
    const int INF = 0x3f3f3f3f;
    const int N = 210;
    const double eps = 1e-6;
    const LL mod = 998244353;
    
    LL fa[210], inv[210];
    
    LL fpow(LL a, LL n)
    {
        LL r = 1LL;
        while(n > 0)
        {
            if(n & 1)
                r = r * a % mod;
            a = a * a % mod;
            n >>= 1;
        }
        return r;
    }
    
    void init()
    {
        fa[0] = 1;
        inv[0] = 1;
        for(LL i = 1; i <= 200; i++)
        {
            fa[i] = fa[i-1] * i % mod;
            inv[i] = fpow(fa[i], mod - 2);
        }
    }
    
    LL C(LL n, LL m)
    {
        if(n < 0)
            return 0;
        n >>= 1;
        if(n == 0)
        	return 1LL;
        LL ans = 0;
        ans = ((fa[n + m] * inv[m] % mod)* inv[n]) % mod;
        return ans;
    }
    
    
    struct point
    {
    	double x, y;
    	point(){}
    	point(double _x, double _y){x = _x, y = _y;}
    	point operator -(const point &b) const
    	{
    		return point(x - b.x, y - b.y);
    	}
    	double operator *(const point &b) const 
    	{
    		return x * b.x + y * b.y;
    	}
    	double operator ^(const point &b) const
    	{
    		return x * b.y - y * b.x;
    	}
    	bool operator == (const point &b) const
    	{
    		return x==b.x && y==b.y;
    	}
    	
    };
    
    double xmult(point p1, point p2, point p0)  
    {  
        return (p1 - p0) ^ (p2 - p0);  
    }  
    
    double distc(point a, point b)
    {
    	return sqrt((double)((b - a) * (b - a)));
    }
    int sign(double x)
    {
    	if(fabs(x) < eps)
    		return 0;
    	if(x < 0)
    		return -1;
    	else 
    		return 1;
    }
    
    struct line
    {
    	point s, t;
    	line(){}
    	line(point ss, point tt){
    		s = ss, t = tt;
    	}
    };
    
    ////////
    int n;
    point stk[N];
    point p[N];
    
    int cmpC(point a, point b)//水平序排序
    {
    	return sign(a.x - b.x) < 0 || (sign(a.x - b.x) == 0 && sign(a.y - b.y) < 0);
    }
    
    int Graham()//水平序
    {
    	sort(p, p + n, cmpC);
    	int top = 0;
    	for(int i = 0; i < n; i++)
    	{
    		while(top >= 2 && sign(xmult(stk[top - 2], stk[top - 1], p[i])) < 0)
    			top--;
    		stk[top++] = p[i];
    	}
    	int tmp = top;
    	for(int i = n - 2; i >= 0; i--)
    	{
    		while(top > tmp && sign(xmult(stk[top - 2],stk[top - 1] ,p[i] )) < 0)
    			top--;
    		stk[top++] = p[i];
    	}
    	if(n > 1)
    		top--;
    	return top;
    }
    
    
    LL check(int m)
    {
    	//cout << m << endl;
    	LL c = 2;
    	LL t = 0;
    	for(int i = 1; i < m; i++)
    	{
    		if(sign(xmult(stk[i - 1], stk[(i + 1)%(m)], stk[i])) == 0)
    			c++;
    		else t = (t + fpow(2, c) - (1LL + c + c * (c - 1) / 2LL) + mod) % mod, c = 2;
    		//cout << c << endl;
    	}
    	if(c > 2)
    		 t = (t + fpow(2, c) - (1LL + c + c * (c - 1) / 2LL) + mod) % mod;
    	return t;
    }
    
    /////////
    int main()
    {
    
    	while(~scanf("%d", &n))
    	{
    		for(int i = 0; i < n; i++)
    		{
    			double x, y;
    			scanf("%lf%lf", &x, &y);
    			p[i] = point(x, y);
    		}
    		LL ans = 0;
    		LL cnt = Graham();
    		//cout << cnt;
    		//ans = (fpow(2, n) - check(cnt) - (1LL + n + (n - 1) * n / 2LL) + mod) % mod;
    		ans = (fpow(2, n) - (1LL + n) + mod) % mod;
    		for(int i = 0; i < n; i++)
    		{
    			map<LL, int>q;
    			for(int j = i + 1; j < n; j++)
    			{
    				LL t;
    				if(p[i].x == p[j].x)
    					t = -1;
    				else t = ((LL)(p[j].y - p[i].y) * fpow(p[j].x - p[i].x, mod - 2) % mod + mod ) % mod;
    					q[t]++;
    			}
    			for(auto j : q)
    			{
    				ans -= fpow(2, j.se) - 1;
    				ans %= mod;
    			}
    		}
    		while(ans < 0)
    			ans += mod;
    		if(cnt > 2)
    			printf("%lld
    ", ans);
    		else printf("0
    ");
    	}
        return 0;
    }
    
    
  • 相关阅读:
    Mysql数据库中的EXISTS和NOT EXISTS
    (4)事件处理——(2)在页面加载的时候执行任务(Performing tasks on page load)
    SICP 习题 (1.13) 解题总结
    [Usaco2009 Feb]Revamping Trails 堆优化 Dijkstra
    (4)事件处理——(3)代码执行的顺序(Timing of code execution)
    【Android】Handler的应用(一):从服务器端加载JSON数据
    HDU 4498 Function Curve (分段, simpson)
    关于 android Intent 传对象和对象数组的一些操作
    mahout算法源码分析之Collaborative Filtering with ALS-WR 并行思路
    javaScript数据类型与typeof操作符
  • 原文地址:https://www.cnblogs.com/Yumesenya/p/7468478.html
Copyright © 2011-2022 走看看