斜抛从(0,0)到(x,y),问其角度。
首先观察下就知道抛物线上横坐标为x的点与给定的点的距离与角度关系并不是线性的,当角度大于一定值时可能会时距离单调递减,所以先三分求个角度范围,保证其点一定在抛物线下方,这样距离和角度的关系就是单调的了,再二分角度即可。
/** @Date : 2017-09-23 23:17:11 * @FileName: HDU 2298 三分.cpp * @Platform: Windows * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : $Id$ */ #include <bits/stdc++.h> #define LL long long #define PII pair<int ,int> #define MP(x, y) make_pair((x),(y)) #define fi first #define se second #define PB(x) push_back((x)) #define MMG(x) memset((x), -1,sizeof(x)) #define MMF(x) memset((x),0,sizeof(x)) #define MMI(x) memset((x), INF, sizeof(x)) using namespace std; const int INF = 0x3f3f3f3f; const int N = 1e5+20; const double eps = 1e-8; const double Pi = acos(-1.0); const double g = 9.8; double check(double agl, double x, double v) { if(x == 0 && agl - Pi / 2.00 < eps) return v * v / 2.000 / g; double va = v * sin(agl); double vb = v * cos(agl); double t = x / vb; double y = va * t - g * t * t / 2; return y; } int main() { int T; cin >> T; while(T--) { double x, y, v; scanf("%lf%lf%lf", &x, &y, &v); if(x == 0) { double ny = check(Pi/2.00, 0, v); if(y - ny > eps) printf("-1 "); else printf("%.6lf ", Pi/2.00); continue; } double l = 0; double r = Pi / 2.0; while(r - l > eps) { double lmid = (l + l + r) / 3.0; double rmid = (l + r + r) / 3.0; if(check(lmid, x, v) > check(rmid, x, v))//三分一个最大角度范围使点总在曲线下方 r = rmid; else l = lmid; } if(y - check(l, x, v) > eps) { printf("-1 "); continue; } double ll = 0; double rr = l; while(rr - ll > eps) { double mid = (ll + rr) / 2.0; if(check(mid, x, v) - y > eps) rr = mid; else ll = mid; } printf("%.6lf ", ll); } return 0; }