zoukankan      html  css  js  c++  java
  • POJ 2832 How Many Pairs?

    Description

    You are given an undirected graph G with N vertices and M edges. Each edge has a length. Below are two definitions.

    1. Define max_len(p) as the length of the edge with the maximum length of p where p is an arbitrary non-empty path in G.
    2. Define min_pair(uv) as min{max_len(p) | p is a path connecting the vertices u and v.}. If there is no paths connecting u and vmin_pair(uv) is defined as infinity.

    Your task is to count the number of (unordered) pairs of vertices u and v satisfying the condition that min_pair(uv) is not greater than a given integer A.

    Input

    The first line of input contains three integer NM and Q (1 < N ≤ 10,000, 0 < M ≤ 50,000, 0 < Q ≤ 10,000). N is the number of vertices, M is the number of edges and Q is the number of queries. Each of the next M lines contains three integers ab, and c (1 ≤ ab ≤ N, 0 ≤ c < 108) describing an edge connecting the vertices a and b with length c. Each of the following Q lines gives a query consisting of a single integer A (0 ≤ A < 108).

    Output

    Output the answer to each query on a separate line.

    Sample Input

    4 5 4
    1 2 1
    2 3 2
    2 3 5
    3 4 3
    4 1 4
    0
    1
    3
    2

    Sample Output

    0
    1
    6
    3

    题解:

    将边和询问都按从小到大排序,然后对于一组询问,我们枚举所有小于当前询问的边,然后把边的两个端点对应的集合进行计算,并查集合并维护

     1 #include <algorithm>
     2 #include <iostream>
     3 #include <cstdlib>
     4 #include <cstring>
     5 #include <cstdio>
     6 #include <cmath>
     7 using namespace std;
     8 const int N=100005,M=500005,QM=2000005;
     9 typedef long long ll;
    10 struct node{
    11     int x,y,dis;
    12     bool operator <(const node &pp)const{
    13         return dis<pp.dis;
    14     }
    15 }e[M];
    16 int gi(){
    17     int str=0;char ch=getchar();
    18     while(ch>'9' || ch<'0')ch=getchar();
    19     while(ch>='0' && ch<='9')str=(str<<1)+(str<<3)+ch-48,ch=getchar();
    20     return str;
    21 }
    22 int n,m,Q,size[N],fa[N];
    23 int find(int x){
    24     return fa[x]==x?x:fa[x]=find(fa[x]);
    25 }
    26 struct Question{
    27     int id,x;ll sum;
    28 }q[QM];
    29 bool compone(const Question &pp,const Question &qq){
    30     return pp.x<qq.x;
    31 }
    32 bool comptwo(const Question &pp,const Question &qq){
    33     return pp.id<qq.id;
    34 }
    35 void work(){
    36     int x,y,dis;
    37     n=gi();m=gi();Q=gi();
    38     for(int i=1;i<=m;i++){
    39         e[i].x=gi();e[i].y=gi();e[i].dis=gi();
    40     }
    41     for(int i=1;i<=Q;i++)q[i].id=i,q[i].x=gi();
    42     for(int i=1;i<=n;i++)fa[i]=i,size[i]=1;
    43     sort(e+1,e+m+1);
    44     sort(q+1,q+Q+1,compone);
    45     int cnt=0,sum=0,p=1;
    46     for(int i=1;i<=Q;i++){
    47         while(e[p].dis<=q[i].x && cnt<n-1 && p<=m){
    48             x=e[p].x;y=e[p].y;
    49             if(find(x)==find(y)){
    50                p++;continue;
    51             }
    52             sum+=(ll)size[find(y)]*size[find(x)];
    53            size[find(x)]+=size[find(y)];
    54             fa[find(y)]=find(x);
    55             p++;cnt++;
    56         }
    57         q[i].sum=sum;
    58     }
    59     sort(q+1,q+Q+1,comptwo);
    60     for(int i=1;i<=Q;i++)
    61         printf("%lld
    ",q[i].sum);
    62 }
    63 int main()
    64 {
    65     work();
    66     return 0;
    67 }
  • 相关阅读:
    Windows 8 常用快捷键
    An Simple Method for Sparse Matrix Optimization by GPU
    Loser’s “Bruteforced Cholesky Factorization for Sparse Matrix on CUDA”
    如何禁用CentOS6/RHEL6中的Nouveau驱动/How to Disable Nouveau Driver on CentOS6/RHEL6 before install NVIDIA Driver
    Car under Physical Sky
    Alembic for Mudbox
    Hair
    耳放一块
    I Like Red Hair, Definitely.
    Note for the Implemention of EnergyConserved Marschner Hair Reflectance Model
  • 原文地址:https://www.cnblogs.com/Yuzao/p/7222264.html
Copyright © 2011-2022 走看看