zoukankan      html  css  js  c++  java
  • HDU 1086 You can Solve a Geometry Problem too

    Problem Description
    Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
    Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

    Note:
    You can assume that two segments would not intersect at more than one point. 

    Input

    Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending. 
    A test case starting with 0 terminates the input and this test case is not to be processed.

    Output

    For each case, print the number of intersections, and one line one case.
    Sample Input
    2 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 3 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.000 0.00 0.00 1.00 0.00 0
     
    Sample Output
    1 3
     
    题解:
    直接判断线段两端点是否分别在另一线段两端
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 #include <cmath>
     6 using namespace std;
     7 const int N=205;const double eps=1e-4;
     8 struct P{
     9     double x,y;
    10     P(){};
    11     P(double _x,double _y){x=_x;y=_y;}
    12     P operator- (P a)const{
    13         return P(x-a.x,y-a.y);
    14     }
    15     double operator^ (const P a)const{
    16         return x*a.y-a.x*y;
    17     }
    18     P operator* (double k)const{
    19         return P(k*x,k*y);
    20     }
    21     P operator+ (const P a)const{
    22         return P(x+a.x,y+a.y);
    23     }
    24 };
    25 int n;
    26 struct Line{
    27     P px,py;
    28 }a[N];
    29 double dot(P A,P B,P C){
    30     return ((A-C)^(B-C));
    31 }
    32 bool check(int i,int j){
    33     P pi1=a[i].px,pi2=a[i].py,pj1=a[j].px,pj2=a[j].py;
    34     double t1,t2;
    35     t1=dot(pi1,pi2,pj1)*dot(pi1,pi2,pj2);
    36    t2=dot(pj1,pj2,pi1)*dot(pj1,pj2,pi2);
    37     if(t1<eps && t2<eps)return true;
    38     return false;
    39 }
    40 void work(){
    41     for(int i=1;i<=n;i++){
    42         scanf("%lf%lf%lf%lf",&a[i].px.x,&a[i].px.y,&a[i].py.x,&a[i].py.y);
    43     }
    44     int ans=0;
    45     for(int i=1;i<=n;i++){
    46         for(int j=i+1;j<=n;j++){
    47             if(check(i,j))ans++;
    48         }
    49     }
    50     printf("%d
    ",ans);
    51 }
    52 int main()
    53 {
    54     while(scanf("%d",&n)){
    55         if(!n)break;
    56         work();
    57     }
    58     return 0;
    59 }
  • 相关阅读:
    线程安全
    Thread 的join方法
    守护线程和用户线程
    LinkedList封装
    System.arraycopy的测试
    ArrayList封装
    常用算法
    Java并发---concurrent包
    Java并发--三大性质
    Java并发--final关键字
  • 原文地址:https://www.cnblogs.com/Yuzao/p/7257975.html
Copyright © 2011-2022 走看看