zoukankan      html  css  js  c++  java
  • HDU 1086 You can Solve a Geometry Problem too

    Problem Description
    Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
    Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

    Note:
    You can assume that two segments would not intersect at more than one point. 

    Input

    Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending. 
    A test case starting with 0 terminates the input and this test case is not to be processed.

    Output

    For each case, print the number of intersections, and one line one case.
    Sample Input
    2 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 3 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.000 0.00 0.00 1.00 0.00 0
     
    Sample Output
    1 3
     
    题解:
    直接判断线段两端点是否分别在另一线段两端
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 #include <cmath>
     6 using namespace std;
     7 const int N=205;const double eps=1e-4;
     8 struct P{
     9     double x,y;
    10     P(){};
    11     P(double _x,double _y){x=_x;y=_y;}
    12     P operator- (P a)const{
    13         return P(x-a.x,y-a.y);
    14     }
    15     double operator^ (const P a)const{
    16         return x*a.y-a.x*y;
    17     }
    18     P operator* (double k)const{
    19         return P(k*x,k*y);
    20     }
    21     P operator+ (const P a)const{
    22         return P(x+a.x,y+a.y);
    23     }
    24 };
    25 int n;
    26 struct Line{
    27     P px,py;
    28 }a[N];
    29 double dot(P A,P B,P C){
    30     return ((A-C)^(B-C));
    31 }
    32 bool check(int i,int j){
    33     P pi1=a[i].px,pi2=a[i].py,pj1=a[j].px,pj2=a[j].py;
    34     double t1,t2;
    35     t1=dot(pi1,pi2,pj1)*dot(pi1,pi2,pj2);
    36    t2=dot(pj1,pj2,pi1)*dot(pj1,pj2,pi2);
    37     if(t1<eps && t2<eps)return true;
    38     return false;
    39 }
    40 void work(){
    41     for(int i=1;i<=n;i++){
    42         scanf("%lf%lf%lf%lf",&a[i].px.x,&a[i].px.y,&a[i].py.x,&a[i].py.y);
    43     }
    44     int ans=0;
    45     for(int i=1;i<=n;i++){
    46         for(int j=i+1;j<=n;j++){
    47             if(check(i,j))ans++;
    48         }
    49     }
    50     printf("%d
    ",ans);
    51 }
    52 int main()
    53 {
    54     while(scanf("%d",&n)){
    55         if(!n)break;
    56         work();
    57     }
    58     return 0;
    59 }
  • 相关阅读:
    抽奖概率算法
    thinkphp 6.0 结合 layuiadmin (iframe版)
    d2-admin 学习记录
    判断点是否在多边形区域内外
    PHP 优秀资源汇集
    前端学习路线
    限制sa 登录IP
    vs2013发布.net程序
    游标批 量删除数据表
    sql server2012 还原数据库
  • 原文地址:https://www.cnblogs.com/Yuzao/p/7257975.html
Copyright © 2011-2022 走看看