描述
一日,崔克茜来到小马镇表演魔法。
其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它。初始时,崔克茜将会随机地选择 k 个盒子用魔法将它们打开。崔克茜想知道最后所有盒子都被打开的概率,你能帮助她回答这个问题吗?
解题报告:
用时:20min,1A
我们按(i)到(ai)连边发现,在同一环内的我们选取任意一个即可
所以我们统计这样的连通子图的个数(m),即每一个子图的节点数,所以我们只要保证每一个子图至少选到一个即可,所以我们DP方案数:
(f[i][j])表示前i个子图中选了j个点的方案数
(f[i][j]+=f[i-1][j-l]*c[s[i]][l])
(s[i])表示i这个子图的大小,c为组合数,这里我么要保证每一个至少都选一个那就限制j-l>=i-1即可,最后答案就是(f[m][k]/c[n][k])
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=3e2+5;
int n,k,s[N],m=0,a[N];double f[N][N],c[N][N];bool vis[N];
void prework(){
for(int i=0;i<N;i++){
c[i][0]=1;
for(int j=1;j<=i;j++)
c[i][j]=c[i-1][j-1]+c[i-1][j];
}
}
void work()
{
m=0;
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)scanf("%d",&a[i]),vis[i]=false;
int x,t=0;
for(int i=1;i<=n;i++){
if(vis[i])continue;
x=i;t=0;
while(!vis[x]){
vis[x]=true;
x=a[x];t++;
}
s[++m]=t;
}
memset(f,0,sizeof(f));
f[0][0]=1;
for(int i=1;i<=m;i++){
for(int j=1;j<=k;j++)
for(int l=1;l<=s[i] && j-l>=i-1;l++){
f[i][j]+=f[i-1][j-l]*c[s[i]][l];
}
}
double ans=(double)f[m][k]/(c[n][k]*1.0);
printf("%.4lf
",ans);
}
int main()
{
int T;cin>>T;
prework();
while(T--)work();
return 0;
}