Description
Solution
生命值范围比较小,首先维护每一个人在每个血量的概率,从而算出生存的概率,设为 (a[i])
询问时,只需要考虑生存的人数,可以 (DP)
设 (g[i][j]) 表示前 (i) 个人活了 (j) 个的概率
(g[i][j]=g[i-1][j-1]*a[i]+g[i-1][j]*(1-a[i]))
那么考虑每一个人时,我们对其他人做这个 (DP) 就行了,可以做 (O(C*n^3))
实际上这是个生成函数 ((a[i]*x+1-a[i])) ,最终求出的是每一个人的乘积,除掉 (i) 这个人的就是我们暴力求出来的 (DP) 数组
这样的话是可逆的,我们减去 ((1-a[i])) 的项,剩下的就都是 (a[i]) 的项了,逆推一下即可
#include<bits/stdc++.h>
using namespace std;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c<='9'&&c>='0';c=getchar())x=x*10+(c&15);x*=f;
}
const int N=205,M=1005,mod=998244353;
inline int qm(int x,int k){
int sum=1;
while(k){
if(k&1)sum=1ll*sum*x%mod;
x=1ll*x*x%mod;k>>=1;
}
return sum;
}
int f[N][M],n,m[N],Q,op,x,p,q,h[N],a[N],tot,c[N],g[N][N],inv[N],res[N];
inline void Modify(){
gi(x);gi(p);gi(q);
p=1ll*p*qm(q,mod-2)%mod;q=(1-p+mod)%mod;
h[0]=(f[x][0]+1ll*f[x][1]*p)%mod;
for(int i=m[x];i>=1;i--)h[i]=(1ll*f[x][i+1]*p+1ll*f[x][i]*q)%mod;
for(int i=m[x];i>=0;i--)f[x][i]=h[i],h[i]=0;
}
inline void solve(){
gi(tot);
for(int i=1;i<=tot;i++){
gi(x);
a[i]=(1-f[x][0]+mod)%mod;
}
memset(g,0,sizeof(g));
g[0][0]=1;
for(int i=1;i<=tot;i++){
g[i][0]=g[i-1][0]*(1-a[i]+mod)%mod;
for(int j=0;j<=i;j++)
g[i][j]=(1ll*g[i-1][j-1]*a[i]+1ll*g[i-1][j]*(1-a[i]+mod))%mod;
}
for(int i=1;i<=tot;i++){
int I=qm(a[i],mod-2),ans=0;
for(int j=1;j<=tot;j++)h[j]=g[tot][j];
for(int j=tot;j>=1;j--){
ans=(ans+1ll*I*h[j]%mod*inv[j])%mod;
h[j-1]=(h[j-1]-1ll*h[j]*(1-a[i]+mod)%mod*I)%mod;
h[j]=0;
}
if(ans<0)ans+=mod;
ans=1ll*ans*a[i]%mod;
printf("%d ",ans);
}
puts("");
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
for(int i=1;i<N;i++)inv[i]=qm(i,mod-2);
cin>>n;
for(int i=1;i<=n;i++)gi(m[i]),f[i][m[i]]=1;
cin>>Q;
while(Q--){
gi(op);
if(op==0)Modify();
else solve();
}
for(int i=1;i<=n;i++){
int ans=0;
for(int j=1;j<=m[i];j++)ans=(ans+1ll*f[i][j]*j)%mod;
printf("%d ",ans);
}
return 0;
}