zoukankan      html  css  js  c++  java
  • HDU 3183.A Magic Lamp-区间找最小值-RMQ(ST)

    A Magic Lamp

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 7170    Accepted Submission(s): 2866


    Problem Description
    Kiki likes traveling. One day she finds a magic lamp, unfortunately the genie in the lamp is not so kind. Kiki must answer a question, and then the genie will realize one of her dreams. 
    The question is: give you an integer, you are allowed to delete exactly m digits. The left digits will form a new integer. You should make it minimum.
    You are not allowed to change the order of the digits. Now can you help Kiki to realize her dream?
     
    Input
    There are several test cases.
    Each test case will contain an integer you are given (which may at most contains 1000 digits.) and the integer m (if the integer contains n digits, m will not bigger then n). The given integer will not contain leading zero.
     
    Output
    For each case, output the minimum result you can get in one line.
    If the result contains leading zero, ignore it. 
     
    Sample Input
    178543 4 1000001 1 100001 2 12345 2 54321 2
     
    Sample Output
    13 1 0 123 321
     
    Source

    题意就是

    一个序列A[1...N],一共N个数,除去M个数使剩下的数组成的整数最小。就是在A[1...N]中顺次选取N-M个数,使值最小。

    直接RMQ,找l到n-m+1的最小值,然后下一个从选取的数下一个开始,因为N-M个数,所以不能过界,要不然长度不够。

    不能有前导零,具体的代码里写的。

    代码:

     1 //HDU 3183.A Magic Lamp-RMQ
     2 #include<bits/stdc++.h>
     3 using namespace std;
     4 typedef long long ll;
     5 const int maxn=1e3+10;
     6 
     7 int n,m,h;
     8 char c[maxn];
     9 int a[maxn],ans[maxn];
    10 int mi[maxn][maxn];
    11 
    12 int Min(int x,int y)
    13 {
    14     return a[x]<=a[y]?x:y;
    15 }
    16 
    17 void ST()
    18 {
    19     for(int i=1;i<=n;i++)
    20         mi[i][0]=i;
    21     for(int j=1;(1<<j)<=n;j++){
    22         for(int i=1;i+(1<<j-1)<=n;i++){
    23             mi[i][j]=Min(mi[i][j-1],mi[i+(1<<(j-1))][j-1]);
    24         }
    25     }
    26 }
    27 
    28 int RMQ(int l,int r)
    29 {
    30     int k=0;
    31     while((1<<(k+1))<=r-l+1) k++;
    32     int cnt=Min(mi[l][k],mi[r-(1<<k)+1][k]);
    33     return cnt;
    34 }
    35 
    36 int main()
    37 {
    38     while(~scanf("%s%d",c,&m)){
    39         n=strlen(c);h=0;
    40         for(int i=0;i<n;i++)
    41             a[i+1]=c[i]-'0';
    42         ST();
    43         int l=1;
    44         m=n-m;
    45         while(m>0){
    46             int pos=RMQ(l,n-m+1);
    47             ans[++h]=pos;
    48             l=pos+1;
    49             m--;
    50         }
    51         if(h==0) cout<<0<<endl;
    52         else{
    53             int flag=0;
    54             for(int i=1;i<=h;i++){
    55                 if(!flag&&a[ans[i]]==0){
    56                     if(i!=h) continue;
    57                     else cout<<a[ans[i]];
    58                 }
    59                 else{
    60                     flag=1;cout<<a[ans[i]];
    61                 }
    62             }
    63             cout<<endl;
    64         }
    65     }
    66 }
  • 相关阅读:
    Unity3D脚本使用:物体调用物体
    Unity3D脚本使用:游戏对象访问
    Unity3D 浏览工具
    spring的工厂方法
    spring运用的设计模式
    Jquery ajax 与 lazyload的混合使用(实现图片异步加载)
    关于线程安全的一点总结
    lazyload的使用心得
    ajax原理及应用
    $.ajax和$.load的区别
  • 原文地址:https://www.cnblogs.com/ZERO-/p/10679789.html
Copyright © 2011-2022 走看看