zoukankan      html  css  js  c++  java
  • HDU 3074.Multiply game-区间乘法-线段树(单点更新、区间查询),上推标记取模

    Multiply game

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 3224    Accepted Submission(s): 1173


    Problem Description
    Tired of playing computer games, alpc23 is planning to play a game on numbers. Because plus and subtraction is too easy for this gay, he wants to do some multiplication in a number sequence. After playing it a few times, he has found it is also too boring. So he plan to do a more challenge job: he wants to change several numbers in this sequence and also work out the multiplication of all the number in a subsequence of the whole sequence.
      To be a friend of this gay, you have been invented by him to play this interesting game with him. Of course, you need to work out the answers faster than him to get a free lunch, He he…

     
    Input
    The first line is the number of case T (T<=10).
      For each test case, the first line is the length of sequence n (n<=50000), the second line has n numbers, they are the initial n numbers of the sequence a1,a2, …,an, 
    Then the third line is the number of operation q (q<=50000), from the fourth line to the q+3 line are the description of the q operations. They are the one of the two forms:
    0 k1 k2; you need to work out the multiplication of the subsequence from k1 to k2, inclusive. (1<=k1<=k2<=n) 
    1 k p; the kth number of the sequence has been change to p. (1<=k<=n)
    You can assume that all the numbers before and after the replacement are no larger than 1 million.
     
    Output
    For each of the first operation, you need to output the answer of multiplication in each line, because the answer can be very large, so can only output the answer after mod 1000000007.
     
    Sample Input
    1 6 1 2 4 5 6 3 3 0 2 5 1 3 7 0 2 5
     
    Sample Output
    240 420
     
    Source
     

    没什么好说的,水题。

    代码:

     1 //HDU 3074.Multiply game-区间乘法-线段树(单点更新+区间查询)
     2 #include<bits/stdc++.h>
     3 using namespace std;
     4 typedef long long ll;
     5 const int maxn=5e5+10;
     6 const ll mod=1000000007;
     7 #define lson l,m,rt<<1
     8 #define rson m+1,r,rt<<1|1
     9 
    10 ll tree[maxn<<2];
    11 
    12 ll pushup(int rt)
    13 {
    14     tree[rt]=(tree[rt<<1]*tree[rt<<1|1])%mod;
    15 }
    16 
    17 void build(int l,int r,int rt)
    18 {
    19     if(l==r){
    20         scanf("%lld",&tree[rt]);
    21         return ;
    22     }
    23 
    24     int m=(l+r)>>1;
    25     build(lson);
    26     build(rson);
    27     pushup(rt);
    28 }
    29 
    30 void update(int pos,ll c,int l,int r,int rt)
    31 {
    32     if(l==r){
    33         tree[rt]=c;
    34         return ;
    35     }
    36 
    37     int m=(l+r)>>1;
    38     if(pos<=m) update(pos,c,lson);
    39     if(pos> m) update(pos,c,rson);
    40     pushup(rt);
    41 }
    42 
    43 ll query(int L,int R,int l,int r,int rt)
    44 {
    45     if(L>r||l>R) return 0;
    46     if(L<=l&&r<=R){
    47         return tree[rt];
    48     }
    49 
    50     int m=(l+r)>>1;
    51     ll ret=1;
    52     if(L<=m) ret=(ret*query(L,R,lson))%mod;
    53     if(R> m) ret=(ret*query(L,R,rson))%mod;
    54     return ret;
    55 }
    56 
    57 int main()
    58 {
    59     int t;
    60     scanf("%d",&t);
    61     while(t--){
    62         int n;
    63         scanf("%d",&n);
    64         build(1,n,1);
    65         int m;
    66         scanf("%d",&m);
    67         for(int i=1;i<=m;i++){
    68             int op;
    69             scanf("%d",&op);
    70             if(op==0){
    71                 int l,r;
    72                 scanf("%d%d",&l,&r);
    73                 printf("%lld
    ",query(l,r,1,n,1));
    74             }
    75             else{
    76                 int pos;ll val;
    77                 scanf("%d%lld",&pos,&val);
    78                 val=val%mod;
    79                 update(pos,val,1,n,1);
    80             }
    81         }
    82     }
    83 }
  • 相关阅读:
    二叉排序树的查找和插入操作
    二叉排序树(二叉查找树)- 数据结构和算法73
    线性索引查找
    斐波那契查找(黄金分割法查找)- 数据结构和算法71
    插值查找(按比例查找)- 数据结构和算法70
    序列!序列!- 零基础入门学习Python016
    字符串:格式化
    字符串:各种奇葩的内置方法
    为duilib的MenuDemo增加消息响应,优化代码和显示效果
    为duilib的MenuDemo增加消息响应,优化代码和显示效果
  • 原文地址:https://www.cnblogs.com/ZERO-/p/10679817.html
Copyright © 2011-2022 走看看