zoukankan      html  css  js  c++  java
  • 计蒜客 41387.XKC's basketball team-线段树(区间查找大于等于x的最靠右的位置) (The Preliminary Contest for ICPC Asia Xuzhou 2019 E.) 2019年徐州网络赛

    XKC's basketball team

    XKC , the captain of the basketball team , is directing a train of nn team members. He makes all members stand in a row , and numbers them 1 cdots n1n from left to right.

    The ability of the ii-th person is w_iwi , and if there is a guy whose ability is not less than w_i+mwi+m stands on his right , he will become angry. It means that the jj-th person will make the ii-th person angry if j>ij>i and w_j ge w_i+mwjwi+m.

    We define the anger of the ii-th person as the number of people between him and the person , who makes him angry and the distance from him is the longest in those people. If there is no one who makes him angry , his anger is -11 .

    Please calculate the anger of every team member .

    Input

    The first line contains two integers nn and m(2leq nleq 5*10^5, 0leq m leq 10^9)m(2n5105,0m109) .

    The following  line contain nn integers w_1..w_n(0leq w_i leq 10^9)w1..wn(0wi109) .

    Output

    A row of nn integers separated by spaces , representing the anger of every member .

    样例输入

    6 1
    3 4 5 6 2 10

    样例输出

    4 3 2 1 0 -1

    这道题目就是区间查找大于等于某个数的最靠右的位置。

    线段树查询,大区间里找小区间。

    两个版本的板子, 比赛的时候,l和r写反了,一直没过。。。

    参考模板来源:

    关于如何用线段树实现查找区间内第一个小于(大于)某一值x的方法

    查询区间内第一个大于x的数

     

     

    代码1:

      1 #include<iostream>
      2 #include<cstdio>
      3 #include<cstring>
      4 #include<algorithm>
      5 #include<bitset>
      6 #include<cassert>
      7 #include<cctype>
      8 #include<cmath>
      9 #include<cstdlib>
     10 #include<ctime>
     11 #include<deque>
     12 #include<iomanip>
     13 #include<list>
     14 #include<map>
     15 #include<queue>
     16 #include<set>
     17 #include<stack>
     18 #include<vector>
     19 using namespace std;
     20 typedef long long ll;
     21 
     22 const double PI=acos(-1.0);
     23 const double eps=1e-6;
     24 const ll mod=1e9+7;
     25 const int inf=0x3f3f3f3f;
     26 const int maxn=5e5+10;
     27 const int maxm=100+10;
     28 #define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
     29 #define lson l,m,rt<<1
     30 #define rson m+1,r,rt<<1|1
     31 
     32 ll tree[maxn<<2];
     33 
     34 void pushup(int rt)
     35 {
     36     tree[rt]=max(tree[rt<<1],tree[rt<<1|1]);
     37 }
     38 
     39 void update(int p,ll val,int l,int r,int rt)
     40 {
     41     if(l==r){
     42         tree[rt]=val;
     43         return ;
     44     }
     45 
     46     int m=(l+r)>>1;
     47     if(p<=m) update(p,val,lson);
     48     else     update(p,val,rson);
     49     pushup(rt);
     50 }
     51 
     52 /*
     53 int get(ll val,int l,int r,int rt)
     54 {
     55     if(l==r){
     56         return l;
     57     }
     58 
     59     int m=(l+r)>>1;
     60     if(tree[rt<<1|1]>=val) return get(val,rson);
     61     if(tree[rt<<1]  > val) return get(val,lson);
     62 }
     63 */
     64 
     65 /*
     66 int query(int L,int R,ll val,int l,int r,int rt)
     67 {
     68     if(L>r||R<l){
     69         return -1;
     70     }
     71 //    if(l==r){
     72 //        if(tree[rt]>=val){
     73 //            return l;
     74 //        }
     75 //        else{
     76 //            return -1;
     77 //        }
     78 //    }
     79     if(L<=l&&r<=R){
     80         if(tree[rt]<val){
     81             return -1;
     82         }
     83         else{
     84             return get(val,l,r,rt);
     85         }
     86     }
     87 
     88     int m=(l+r)>>1;
     89     int ret=query(L,R,val,rson);
     90     if(ret!=-1){
     91         return ret;
     92     }
     93     return query(L,R,val,lson);
     94 }
     95 */
     96 
     97 int query(int L,int R,ll val,int l,int r,int rt)
     98 {
     99     if(L>r||R<l){
    100         return -1;
    101     }
    102     if(l==r){
    103         if(tree[rt]>=val){
    104             return l;
    105         }
    106         else{
    107             return -1;
    108         }
    109     }
    110     if(L<=l&&r<=R){
    111         if(tree[rt]<val){
    112             return -1;
    113         }
    114 //        else{
    115 //            return get(val,l,r,rt);
    116 //        }
    117     }
    118 
    119     int m=(l+r)>>1;
    120     int ret=query(L,R,val,rson);
    121     if(ret!=-1){
    122         return ret;
    123     }
    124     return query(L,R,val,lson);
    125 }
    126 
    127 ll a[maxn];
    128 int ans[maxn];
    129 
    130 int main()
    131 {
    132     int n;
    133     ll m;
    134     scanf("%d%lld",&n,&m);
    135     for(int i=1;i<=n;i++){
    136         scanf("%lld",&a[i]);
    137         update(i,a[i],1,n,1);
    138     }
    139     for(int i=1;i<=n;i++){
    140         int pos=query(i,n,a[i]+m,1,n,1);
    141 //        cout<<pos<<endl;
    142         if(pos!=-1) ans[i]=pos-i-1;
    143         else ans[i]=-1;
    144     }
    145     for(int i=1;i<n;i++){
    146         printf("%d ",ans[i]);
    147     }
    148     printf("%d
    ",ans[n]);
    149 }

    代码2:

      1 #include<iostream>
      2 #include<cstdio>
      3 #include<cstring>
      4 #include<algorithm>
      5 #include<bitset>
      6 #include<cassert>
      7 #include<cctype>
      8 #include<cmath>
      9 #include<cstdlib>
     10 #include<ctime>
     11 #include<deque>
     12 #include<iomanip>
     13 #include<list>
     14 #include<map>
     15 #include<queue>
     16 #include<set>
     17 #include<stack>
     18 #include<vector>
     19 using namespace std;
     20 typedef long long ll;
     21 
     22 const double PI=acos(-1.0);
     23 const double eps=1e-6;
     24 const ll mod=1e9+7;
     25 const int inf=0x3f3f3f3f;
     26 const int maxn=5e5+10;
     27 const int maxm=100+10;
     28 #define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
     29 #define lson l,m,rt<<1
     30 #define rson m+1,r,rt<<1|1
     31 
     32 ll tree[maxn<<2];
     33 
     34 void pushup(int rt)
     35 {
     36     tree[rt]=max(tree[rt<<1],tree[rt<<1|1]);
     37 }
     38 
     39 void update(int p,ll val,int l,int r,int rt)
     40 {
     41     if(l==r){
     42         tree[rt]=val;
     43         return ;
     44     }
     45 
     46     int m=(l+r)>>1;
     47     if(p<=m) update(p,val,lson);
     48     else     update(p,val,rson);
     49     pushup(rt);
     50 }
     51 
     52 int get(ll val,int l,int r,int rt)
     53 {
     54     if(l==r){
     55         return l;
     56     }
     57 
     58     int m=(l+r)>>1;
     59     if(tree[rt<<1|1]>=val) return get(val,rson);
     60     if(tree[rt<<1]  > val) return get(val,lson);
     61 }
     62 
     63 int query(int L,int R,ll val,int l,int r,int rt)
     64 {
     65     if(L>r||R<l){
     66         return -1;
     67     }
     68 //    if(l==r){
     69 //        if(tree[rt]>=val){
     70 //            return l;
     71 //        }
     72 //        else{
     73 //            return -1;
     74 //        }
     75 //    }
     76     if(L<=l&&r<=R){
     77         if(tree[rt]<val){
     78             return -1;
     79         }
     80         else{
     81             return get(val,l,r,rt);
     82         }
     83     }
     84 
     85     int m=(l+r)>>1;
     86     int ret=query(L,R,val,rson);
     87     if(ret!=-1){
     88         return ret;
     89     }
     90     return query(L,R,val,lson);
     91 }
     92 
     93 ll a[maxn];
     94 int ans[maxn];
     95 
     96 int main()
     97 {
     98     int n;
     99     ll m;
    100     scanf("%d%lld",&n,&m);
    101     for(int i=1;i<=n;i++){
    102         scanf("%lld",&a[i]);
    103         update(i,a[i],1,n,1);
    104     }
    105     for(int i=1;i<=n;i++){
    106         int pos=query(i,n,a[i]+m,1,n,1);
    107 //        cout<<pos<<endl;
    108         if(pos!=-1) ans[i]=pos-i-1;
    109         else ans[i]=-1;
    110     }
    111     for(int i=1;i<n;i++){
    112         printf("%d ",ans[i]);
    113     }
    114     printf("%d
    ",ans[n]);
    115 }
  • 相关阅读:
    转载:javaweb学习总结(二十九)——EL表达式
    转载:javaweb学习总结(二十八)——JSTL标签库之核心标签
    转载:javaweb学习总结(二十七)——jsp简单标签开发案例和打包
    空指针异常
    转载:javaweb学习总结(二十六)——jsp简单标签标签库开发(二)
    转载:javaweb学习总结(二十五)——jsp简单标签开发(一)
    转载:javaweb学习总结(二十四)——jsp传统标签开发
    线性代数的本质-05-行列式
    线性代数的本质-04补充-三维空间中的线性变换
    线性代数的本质-04-矩阵乘法与线性变换复合
  • 原文地址:https://www.cnblogs.com/ZERO-/p/11484720.html
Copyright © 2011-2022 走看看