zoukankan      html  css  js  c++  java
  • 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)

     A. An Olympian Math Problem

    • 54.28%
    •  1000ms
    •  65536K
     

    Alice, a student of grade 66, is thinking about an Olympian Math problem, but she feels so despair that she cries. And her classmate, Bob, has no idea about the problem. Thus he wants you to help him. The problem is:

    We denote k!k!:

    k! = 1 imes 2 imes cdots imes (k - 1) imes kk!=1×2××(k1)×k

    We denote SS:

    S = 1 imes 1! + 2 imes 2! + cdots +S=1×1!+2×2!++
    (n - 1) imes (n-1)!(n1)×(n1)!

    Then SS module nn is ____________

    You are given an integer nn.

    You have to calculate SS modulo nn.

    Input

    The first line contains an integer T(T le 1000)T(T1000), denoting the number of test cases.

    For each test case, there is a line which has an integer nn.

    It is guaranteed that 2 le nle 10^{18}2n1018.

    Output

    For each test case, print an integer SS modulo nn.

    Hint

    The first test is: S = 1 imes 1!= 1S=1×1!=1, and 11 modulo 22 is 11.

    The second test is: S = 1 imes 1!+2 imes 2!= 5S=1×1!+2×2!=5 , and 55 modulo 33 is 22.

    样例输入

    2
    2
    3

    样例输出

    1
    2

    题目来源

    ACM-ICPC 2018 南京赛区网络预赛

     

     

    题意很好理解。

    直接代码

    代码:

     1 //A-数学公式
     2 #include<iostream>
     3 #include<cstdio>
     4 #include<cstring>
     5 #include<algorithm>
     6 #include<bitset>
     7 #include<cassert>
     8 #include<cctype>
     9 #include<cmath>
    10 #include<cstdlib>
    11 #include<ctime>
    12 #include<deque>
    13 #include<iomanip>
    14 #include<list>
    15 #include<map>
    16 #include<queue>
    17 #include<set>
    18 #include<stack>
    19 #include<vector>
    20 using namespace std;
    21 typedef long long ll;
    22 
    23 const double PI=acos(-1.0);
    24 const double eps=1e-6;
    25 const ll mod=1e9+7;
    26 const int inf=0x3f3f3f3f;
    27 const int maxn=1e5+10;
    28 const int maxm=100+10;
    29 #define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    30 //公式为1*1!+2*2!+3*3!+...+n*n!=(n+1)!-1,本题为(n!-1)%n
    31 //因为n!-1=(n-1)*n-1=(n-2)*n+n-1,所以[(n-2)*n+(n-1)]%n=n-1
    32 //因n*n!=(n+1-1)n!=(n+1)n!-n!=(n+1)!-n!
    33 //所以:1*1!=2!-1!
    34 //2*2!=3!-2!
    35 //3*3!=4!-3!
    36 //.
    37 //n*n!=(n+1)!-n!
    38 //相加后有:1*1!+2*2!+3*3!+.+n*n!=(n+1)!-1
    39 //1*1!+2*2!+3*3!+.+n*n!=(n+1)!-1
    40 //把最后一项拆开来,变成(n+1-1)n!=(n+1)n!-n!
    41 
    42 int main()
    43 {
    44     int t;
    45     cin>>t;
    46     while(t--){
    47         ll n;
    48         cin>>n;
    49         cout<<n-1<<endl;
    50     }
    51 }

    溜了,一会贴一下线段树的题目。

  • 相关阅读:
    webService理解
    通过ajax.net调用webservice
    .net中调用webservice,post、get方式实现调用
    webservice加载异常
    http 的get,post方式访问url
    dorado
    dorado7中父窗体获取动态生成的iframe中的对象
    dorado中session
    最长公共子序列
    线性DP-数字三角形,最长上升子序列
  • 原文地址:https://www.cnblogs.com/ZERO-/p/9637484.html
Copyright © 2011-2022 走看看