zoukankan      html  css  js  c++  java
  • HDU 2767.Proving Equivalences-强连通图(有向图)+缩点

    Proving Equivalences

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 9208    Accepted Submission(s): 3257


    Problem Description
    Consider the following exercise, found in a generic linear algebra textbook.

    Let A be an n × n matrix. Prove that the following statements are equivalent:

    1. A is invertible.
    2. Ax = b has exactly one solution for every n × 1 matrix b.
    3. Ax = b is consistent for every n × 1 matrix b.
    4. Ax = 0 has only the trivial solution x = 0. 

    The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

    Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

    I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
     
    Input
    On the first line one positive number: the number of testcases, at most 100. After that per testcase:

    * One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
    * m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
     
    Output
    Per testcase:

    * One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
     
    Sample Input
    2 4 0 3 2 1 2 1 3
     
    Sample Output
    4 2
     
    Source
     
     
    代码:
     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 const int N=1e5+10;
     4 int head[N],dfn[N],low[N],belong[N],stak[N],instack[N];
     5 int in[N],out[N];
     6 int incnt,outcnt;
     7 int cnt,indexx,top,ans;
     8 struct node{
     9     int u,v,next;
    10 }edge[N*3];
    11 
    12 void add(int u,int v)
    13 {
    14     edge[cnt].v=v;
    15     edge[cnt].next=head[u];
    16     head[u]=cnt++;
    17 }
    18 
    19 void Init()
    20 {
    21     memset(head,-1,sizeof(head));
    22     memset(dfn,0,sizeof(dfn));
    23     memset(instack,0,sizeof(instack));
    24     cnt=indexx=top=ans=0;
    25     memset(in,0,sizeof(in));
    26     memset(out,0,sizeof(out));
    27     incnt=outcnt=0;
    28 }
    29 
    30 void tarjan(int u)
    31 {
    32     dfn[u]=low[u]=++indexx;
    33     stak[++top]=u;
    34     instack[u]=1;
    35     for(int i=head[u]; i!=-1; i=edge[i].next){
    36         int v=edge[i].v;
    37         if(!dfn[v]){
    38             tarjan(v);
    39             low[u]=min(low[u],low[v]);
    40         }
    41         else if(instack[v])
    42             low[u]=min(low[u],dfn[v]);
    43     }
    44     if(dfn[u]==low[u]){
    45         ans++;
    46         while(1){
    47             int v=stak[top--];
    48             instack[v]=0;
    49             belong[v]=ans;
    50             if(u==v)
    51                 break;
    52         }
    53     }
    54 }
    55 
    56 int main()
    57 {
    58     int T,n,m;
    59     int u,v;
    60     scanf("%d",&T);
    61     while(T--){
    62         scanf("%d%d",&n,&m);
    63         Init();
    64         while(m--){
    65             scanf("%d%d",&u,&v);
    66             add(u,v);
    67         }
    68         for(int i=1; i<=n; i++){
    69             if(!dfn[i])
    70                 tarjan(i);
    71         }
    72         if(ans==1){
    73             printf("0
    ");
    74             continue;
    75         }
    76         for(int i=1; i<=n; i++){
    77             for(int j=head[i]; j!=-1; j=edge[j].next){
    78                 int v=edge[j].v;
    79                 if(belong[v]!=belong[i]){
    80                     in[belong[v]]++;
    81                     out[belong[i]]++;
    82                 }
    83             }
    84         }
    85         for(int i=1; i<=ans; i++){
    86             if(!in[i])
    87                 incnt++;
    88             if(!out[i])
    89                 outcnt++;
    90         }
    91         printf("%d
    ",max(incnt,outcnt));
    92     }
    93     return 0;
    94 }
  • 相关阅读:
    代码重构~方法归子
    代码重构~代码注释
    VS2010安装帮助文档
    imagecreate()与imagecreatetruecolor()区别
    php cookie 和session详解
    horner's rule霍纳法则及综合除法
    php单引号和双引号的区别与用法
    php通过session判断用户是否登录
    php 产生验证码
    基于递归的整数幂的计算
  • 原文地址:https://www.cnblogs.com/ZERO-/p/9741057.html
Copyright © 2011-2022 走看看