Sereja has a sequence that consists of n positive integers, a1, a2, ..., an.
First Sereja took a piece of squared paper and wrote all distinct non-empty non-decreasing subsequences of sequence a. Then for each sequence written on the squared paper, Sereja wrote on a piece of lines paper all sequences that do not exceed it.
A sequence of positive integers x = x1, x2, ..., xr doesn't exceed a sequence of positive integers y = y1, y2, ..., yr, if the following inequation holds: x1 ≤ y1, x2 ≤ y2, ..., xr ≤ yr.
Now Sereja wonders, how many sequences are written on the lines piece of paper. Help Sereja, find the required quantity modulo 1000000007 (109 + 7).
Input
The first line contains integer n (1 ≤ n ≤ 105). The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 106).
Output
In the single line print the answer to the problem modulo 1000000007 (109 + 7).
Examples
1
42
42
3
1 2 2
13
5
1 2 3 4 5
719
题意:
原题意是这样的:
看第二组样例:
3
1 2 2
首先,写出所有非空的,非严格递增的,不同的子序列:
1
2
1 2
2 2
1 2 2
然后写出小于这些子序列的数组,问数组个数
~ 1
1
~2
1
2
~ 1 2
1 1
1 2
~2 2
1 1
1 2
2 1
2 2
~1 2 2
1 1 1
1 1 2
1 2 1
1 2 2
这样一共写出了13个数组。
显而易见的,每个子序列可以写出来的数组个数,其实就是子序列的数字之积。
思路:
dp[num[i]]表示子序列以num[i]为结尾的答案。
然后就按照输入顺序进行更新。
dp[num[i]]=(dp[1]到dp[num[i]]的和)*num[i]+num[i];
前半部分表示接在其他数字后面,用树状数组优化,后半部分表示自己单独出现
当然还要去重,就是1 2 2,第一个2会接在1后面,第二个2也接在1后面,就会重复。
用一个pre记录之前的那个dp[2],正常更新dp[2]再减去pre[2]就行了。
#include<iostream> #include<algorithm> #include<vector> #include<stack> #include<queue> #include<map> #include<set> #include<cstdio> #include<cstring> #include<cmath> #include<ctime> #define fuck(x) cout<<#x<<" = "<<x<<endl; #define debug(a,i) cout<<#a<<"["<<i<<"] = "<<a[i]<<endl; #define ls (t<<1) #define rs ((t<<1)|1) using namespace std; typedef long long ll; typedef unsigned long long ull; const int maxn = 100086; const int maxm = 1000086; const int inf = 2.1e9; const ll Inf = 999999999999999999; const int mod = 1000000007; const double eps = 1e-6; const double pi = acos(-1); int num[maxn]; ll dp[maxm]; ll a[maxm]; ll pre[maxm]; int lowbit(int x){ return x&(-x); } void update(int pos,ll num){ while (pos<maxm){ a[pos]+=num; a[pos]%=mod; pos+=lowbit(pos); } } ll query(int pos){ ll ans=0; while (pos){ ans+=a[pos]; ans%=mod; pos-=lowbit(pos); } return ans; } int main() { // ios::sync_with_stdio(false); // freopen("in.txt","r",stdin); int n; scanf("%d",&n); for(int i=1;i<=n;i++){ scanf("%d",&num[i]); } for(int i=1;i<=n;i++){ ll ans=query(num[i]); ll tmp=ans*num[i]+num[i]; dp[num[i]]+=ans*num[i]+num[i]; dp[num[i]]%=mod; dp[num[i]]-=pre[num[i]]; tmp=((tmp-pre[num[i]])+mod)%mod; dp[num[i]]=(dp[num[i]]+mod)%mod; pre[num[i]]=dp[num[i]]; update(num[i],tmp); // debug(dp,num[i]); } ll ans=0; for(int i=1;i<=maxm;i++){ ans+=dp[i]; ans%=mod; } printf("%lld ",ans); return 0; }