zoukankan      html  css  js  c++  java
  • POJ 1200 Crazy Search (Hash)

    Crazy Search
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 32337   Accepted: 8906

    Description

    Many people like to solve hard puzzles some of which may lead them to madness. One such puzzle could be finding a hidden prime number in a given text. Such number could be the number of different substrings of a given size that exist in the text. As you soon will discover, you really need the help of a computer and a good algorithm to solve such a puzzle. 
    Your task is to write a program that given the size, N, of the substring, the number of different characters that may occur in the text, NC, and the text itself, determines the number of different substrings of size N that appear in the text. 

    As an example, consider N=3, NC=4 and the text "daababac". The different substrings of size 3 that can be found in this text are: "daa"; "aab"; "aba"; "bab"; "bac". Therefore, the answer should be 5. 

    Input

    The first line of input consists of two numbers, N and NC, separated by exactly one space. This is followed by the text where the search takes place. You may assume that the maximum number of substrings formed by the possible set of characters does not exceed 16 Millions.

    Output

    The program should output just an integer corresponding to the number of different substrings of size N found in the given text.

    Sample Input

    3 4
    daababac

    Sample Output

    5

    Hint

    Huge input,scanf is recommended.

    思路:

    又学会了一种求hash值的方式,这种方式只能求固定长度的hash值,优点是内存占用小

    代码

    #include<iostream>
    #include<cstring>
    #include<algorithm>
    #include<cstdio>
    using namespace std;
    typedef unsigned long long ll;
    const int maxn = 1.6e7+5;
    char a[maxn];
    bool mp[maxn];
    int name[300];
    ll p;
    int n,m;
    int main()
    {
        scanf("%d%d",&n,&m);
        scanf("%s",a+1);
        int len=strlen(a+1);
        int k=0;
        for(int i=1;i<=len;i++){
            if(!name[a[i]]){name[a[i]]=++k;}
            if(k==m){break;}
        }
        int ans=0;
        ll sum=0;
        p=1;
        for(int i=1;i<=n;i++){
            p*=m;
            sum=sum*m+name[a[i]];
        }
        mp[sum]=1;
        ans++;
        for(int i=n+1;i<=len;i++){
            sum=sum*m+name[a[i]]-name[a[i-n]]*p;
            if(!mp[sum]){
                ans++;
                mp[sum]=1;
            }
        }
        printf("%d
    ",ans);
    }
    

      

     

  • 相关阅读:
    20145317彭垚《网络对抗》Exp2 后门原理与实践
    20145317 网络对抗技术 逆向与Bof基础
    逆向破解
    逆向破解——处理附加数据
    逆向破解——程序去除自校验
    逆向脱壳——暴力破解
    逆向脱壳——脱壳后的修复
    逆向脱壳
    逆向脱壳——基本知识
    20145315《网络对抗》——免考项目:逆向脱壳
  • 原文地址:https://www.cnblogs.com/ZGQblogs/p/9460672.html
Copyright © 2011-2022 走看看