zoukankan      html  css  js  c++  java
  • C++实现红黑树

    红黑树的应用:
    1. 利用key_value对,快速查找,O(logn)
      1. socket与客户端id之间,形成映射关系(socket, id)
      2. 内存分配管理
        1. 一整块内存,不断分配小块
        2. 每分配一次,就加入到红黑树
        3. 释放的时候,在红黑树找到相应的块,然后去释放
    2. 利用红黑树中序遍历是顺序的特性
      1. 进程的调度
        1. 进程处于等待状态,每个进程都有等待的时间,在未来某个时刻会运行,将这些进程利用红黑树组织起来
        2. 在某个时刻,找到对应时刻的节点,然后中序遍历,就可以把该节点之前的节点全部运行到。
    3. nginx定时器
     
    为什么使用红黑树不使用哈希表?
    • 极少情况下,需要key是有序的,如定时器
     
    二叉排序树(bstree)
    1. 左子树 < 根 < 右子树
    2. 中序遍历结果是顺序的
    3. 极端情况下,如果顺序插入,结果就成了链表
      1. 为了解决这个问题,引入了红黑树
     
    红黑树性质
    1. 每个节点是红色的或黑色的
    2. 根节点是黑色的
    3. 叶子节点是黑色的
    4. 红色节点的两个子节点必须是黑色的
    5. 对每个节点,该节点到其子孙节点的所有路径上的包含相同数目的黑节点(黑高相同)
      1. 最短路径就是全黑
      2. 最长路径就是黑红相间
     
    如何证明红黑树的正确性?
    • 采用归纳法
     
    左旋与右旋
    • 改变三个方向,六根指针
     
    红黑树的插入:
    1. 插入节点的时候,原先的树是满足红黑树性质的
    2. 插入节点的颜色是红色更容易满足红黑树的性质
    3. 插入的节点是红色,且其父节点也是红色的时候,需要调整
     
    插入有三种情况:
    1. 叔父节点是红色
    2. 叔父节点是黑色,且祖父节点,父节点和插入节点不是一条直线
    3. 叔父节点是黑色,且祖父节点,父节点和插入节点是一条直线
     
    • 平衡二叉树:
      • 内部不是color,而是一个high记录高度,如果左右子树高度相差超过1,就需要调整。
     
    红黑树的删除:
    1. 什么是删除节点? y-> y是z的后继节点
    2. 什么是轴心节点? x是y的右子树
      1. 如果x是红色,把x变成黑色
      2. 如果x是黑色,需要进行调整
     
    删除y节点,是什么颜色的时候需要调整?
    • 黑色需要调整,删除黑色破坏了黑高
     

    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    
    #define RED                1
    #define BLACK             2
    
    typedef int KEY_TYPE;
    
    typedef struct _rbtree_node {
        unsigned char color;
        struct _rbtree_node *right;
        struct _rbtree_node *left;
        struct _rbtree_node *parent;
        KEY_TYPE key;
        void *value;
    } rbtree_node;
    
    typedef struct _rbtree {
        rbtree_node *root;
        rbtree_node *nil;
    } rbtree;
    
    rbtree_node *rbtree_mini(rbtree *T, rbtree_node *x) {
        while (x->left != T->nil) {
            x = x->left;
        }
        return x;
    }
    
    rbtree_node *rbtree_maxi(rbtree *T, rbtree_node *x) {
        while (x->right != T->nil) {
            x = x->right;
        }
        return x;
    }
    
    rbtree_node *rbtree_successor(rbtree *T, rbtree_node *x) {
        rbtree_node *y = x->parent;
    
        if (x->right != T->nil) {
            return rbtree_mini(T, x->right);
        }
    
        while ((y != T->nil) && (x == y->right)) {
            x = y;
            y = y->parent;
        }
        return y;
    }
    
    
    void rbtree_left_rotate(rbtree *T, rbtree_node *x) {
    
        rbtree_node *y = x->right;  // x  --> y  ,  y --> x,   right --> left,  left --> right
    
        x->right = y->left; //1 1
        if (y->left != T->nil) { //1 2
            y->left->parent = x;
        }
    
        y->parent = x->parent; //1 3
        if (x->parent == T->nil) { //1 4
            T->root = y;
        } else if (x == x->parent->left) {
            x->parent->left = y;
        } else {
            x->parent->right = y;
        }
    
        y->left = x; //1 5
        x->parent = y; //1 6
    }
    
    
    void rbtree_right_rotate(rbtree *T, rbtree_node *y) {
    
        rbtree_node *x = y->left;
    
        y->left = x->right;
        if (x->right != T->nil) {
            x->right->parent = y;
        }
    
        x->parent = y->parent;
        if (y->parent == T->nil) {
            T->root = x;
        } else if (y == y->parent->right) {
            y->parent->right = x;
        } else {
            y->parent->left = x;
        }
    
        x->right = y;
        y->parent = x;
    }
    
    void rbtree_insert_fixup(rbtree *T, rbtree_node *z) {
    
        while (z->parent->color == RED) { //z ---> RED
            if (z->parent == z->parent->parent->left) {
                rbtree_node *y = z->parent->parent->right;
                if (y->color == RED) {
                    z->parent->color = BLACK;
                    y->color = BLACK;
                    z->parent->parent->color = RED;
    
                    z = z->parent->parent; //z --> RED
                } else {
    
                    if (z == z->parent->right) {
                        z = z->parent;
                        rbtree_left_rotate(T, z);
                    }
    
                    z->parent->color = BLACK;
                    z->parent->parent->color = RED;
                    rbtree_right_rotate(T, z->parent->parent);
                }
            }else {
                rbtree_node *y = z->parent->parent->left;
                if (y->color == RED) {
                    z->parent->color = BLACK;
                    y->color = BLACK;
                    z->parent->parent->color = RED;
    
                    z = z->parent->parent; //z --> RED
                } else {
                    if (z == z->parent->left) {
                        z = z->parent;
                        rbtree_right_rotate(T, z);
                    }
    
                    z->parent->color = BLACK;
                    z->parent->parent->color = RED;
                    rbtree_left_rotate(T, z->parent->parent);
                }
            }
            
        }
    
        T->root->color = BLACK;
    }
    
    
    void rbtree_insert(rbtree *T, rbtree_node *z) {
    
        rbtree_node *y = T->nil;
        rbtree_node *x = T->root;
    
        while (x != T->nil) {
            y = x;
            if (z->key < x->key) {
                x = x->left;
            } else if (z->key > x->key) {
                x = x->right;
            } else { //Exist
                return ;
            }
        }
    
        z->parent = y;
        if (y == T->nil) {
            T->root = z;
        } else if (z->key < y->key) {
            y->left = z;
        } else {
            y->right = z;
        }
    
        z->left = T->nil;
        z->right = T->nil;
        z->color = RED;
    
        rbtree_insert_fixup(T, z);
    }
    
    void rbtree_delete_fixup(rbtree *T, rbtree_node *x) {
    
        while ((x != T->root) && (x->color == BLACK)) {
            if (x == x->parent->left) {
    
                rbtree_node *w= x->parent->right;
                if (w->color == RED) {
                    w->color = BLACK;
                    x->parent->color = RED;
    
                    rbtree_left_rotate(T, x->parent);
                    w = x->parent->right;
                }
    
                if ((w->left->color == BLACK) && (w->right->color == BLACK)) {
                    w->color = RED;
                    x = x->parent;
                } else {
    
                    if (w->right->color == BLACK) {
                        w->left->color = BLACK;
                        w->color = RED;
                        rbtree_right_rotate(T, w);
                        w = x->parent->right;
                    }
    
                    w->color = x->parent->color;
                    x->parent->color = BLACK;
                    w->right->color = BLACK;
                    rbtree_left_rotate(T, x->parent);
    
                    x = T->root;
                }
    
            } else {
    
                rbtree_node *w = x->parent->left;
                if (w->color == RED) {
                    w->color = BLACK;
                    x->parent->color = RED;
                    rbtree_right_rotate(T, x->parent);
                    w = x->parent->left;
                }
    
                if ((w->left->color == BLACK) && (w->right->color == BLACK)) {
                    w->color = RED;
                    x = x->parent;
                } else {
    
                    if (w->left->color == BLACK) {
                        w->right->color = BLACK;
                        w->color = RED;
                        rbtree_left_rotate(T, w);
                        w = x->parent->left;
                    }
    
                    w->color = x->parent->color;
                    x->parent->color = BLACK;
                    w->left->color = BLACK;
                    rbtree_right_rotate(T, x->parent);
    
                    x = T->root;
                }
    
            }
        }
    
        x->color = BLACK;
    }
    
    rbtree_node *rbtree_delete(rbtree *T, rbtree_node *z) {
    
        rbtree_node *y = T->nil;
        rbtree_node *x = T->nil;
    
        if ((z->left == T->nil) || (z->right == T->nil)) {
            y = z;
        } else {
            y = rbtree_successor(T, z);
        }
    
        if (y->left != T->nil) {
            x = y->left;
        } else if (y->right != T->nil) {
            x = y->right;
        }
    
        x->parent = y->parent;
        if (y->parent == T->nil) {
            T->root = x;
        } else if (y == y->parent->left) {
            y->parent->left = x;
        } else {
            y->parent->right = x;
        }
    
        if (y != z) {
            z->key = y->key;
            z->value = y->value;
        }
    
        if (y->color == BLACK) {
            rbtree_delete_fixup(T, x);
        }
    
        return y;
    }
    
    rbtree_node *rbtree_search(rbtree *T, KEY_TYPE key) {
    
        rbtree_node *node = T->root;
        while (node != T->nil) {
            if (key < node->key) {
                node = node->left;
            } else if (key > node->key) {
                node = node->right;
            } else {
                return node;
            }    
        }
        return T->nil;
    }
    
    
    void rbtree_traversal(rbtree *T, rbtree_node *node) {
        if (node != T->nil) {
            rbtree_traversal(T, node->left);
            printf("key:%d, color:%d
    ", node->key, node->color);
            rbtree_traversal(T, node->right);
        }
    }
    
    int main() {
    
        int keyArray[20] = {24,25,13,35,23, 26,67,47,38,98, 20,19,17,49,12, 21,9,18,14,15};
    
        rbtree *T = (rbtree *)malloc(sizeof(rbtree));
        if (T == NULL) {
            printf("malloc failed
    ");
            return -1;
        }
        
        T->nil = (rbtree_node*)malloc(sizeof(rbtree_node));
        T->nil->color = BLACK;
        T->root = T->nil;
    
        rbtree_node *node = T->nil;
        int i = 0;
        for (i = 0;i < 20;i ++) {
            node = (rbtree_node*)malloc(sizeof(rbtree_node));
            node->key = keyArray[i];
            node->value = NULL;
    
            rbtree_insert(T, node);
            
        }
    
        rbtree_traversal(T, T->root);
        printf("----------------------------------------
    ");
    
        for (i = 0;i < 20;i ++) {
    
            rbtree_node *node = rbtree_search(T, keyArray[i]);
            rbtree_node *cur = rbtree_delete(T, node);
            free(cur);
    
            rbtree_traversal(T, T->root);
            printf("----------------------------------------
    ");
        }
      
    }
  • 相关阅读:
    通信错误:(-1)[描述:无法解析路由器DDNS地址,请检查DDNS状态.] 解析办法
    小数量宽带用户的福音,Panabit 云计费easyradius 接口隆重发布,PA宽带计费系统
    送给那些经常问我如何设置360测速结果为电信的朋友,360测速模块原理简单分析
    Universal-Image-Loader(UIL)使用方法&流程图&源码分析 ----- 未完
    Android开发框架
    Android线程池的使用(未完)
    Android LruCache究竟是什么
    Java finally语句到底是在return之前还是之后执行?
    Android自定义图片加载框架
    Android 自定义View实现单击和双击事件
  • 原文地址:https://www.cnblogs.com/ZGreMount/p/15488553.html
Copyright © 2011-2022 走看看