zoukankan      html  css  js  c++  java
  • Jacobian矩阵和Hessian矩阵

    1.Jacobian矩阵

    在矩阵论中,Jacobian矩阵是一阶偏导矩阵,其行列式称为Jacobian行列式。假设 函数 $f:R^n o R^m$, 输入是向量 $x in R^n$ ,输出为向量 $f(x) in R^m$ ,那么对应的Jacobian矩阵 $J$ 是一个 $m*n$ 的矩阵,其定义如下:

    [mathbf J = frac{dmathbf f}{dmathbf x} = egin{bmatrix}dfrac{partial mathbf{f}}{partial x_1} & cdots & dfrac{partial mathbf{f}}{partial x_n} end{bmatrix}= egin{bmatrix}dfrac{partial f_1}{partial x_1} & cdots & dfrac{partial f_1}{partial x_n}\
        vdots & ddots & vdots\
        dfrac{partial f_m}{partial x_1} & cdots & dfrac{partial f_m}{partial x_n} end{bmatrix}]

    或者,也可以记作:

    [mathbf J_{i,j} = frac{partial f_i}{partial x_j} .]

    2.Hessian矩阵

    假设函数 $f:R^n o R$ 的输入 $xin R^n$,输出 $f(x)in R$。如果函数$f$的二阶偏导全部存在,并在定义域内连续,那么函数$f$的Hessian矩阵$H$

  • 相关阅读:
    学习Tomcat(三)
    TIME_WAIT 优化注意事项
    TIME_WAIT 优化
    TCP(一)
    TCP(二)
    TCP(三)
    5-14 练习题及答案
    5-14 进程池
    5-11 操作系统介绍
    5-8套接字socket
  • 原文地址:https://www.cnblogs.com/ZJUT-jiangnan/p/4872962.html
Copyright © 2011-2022 走看看