博客摘自:Deep learning 第二篇 婴儿学步 Theano如何做算数?
import theano.tensor as T from theano import function x=T.dscalar('x') y=T.dscalar('y') z=x+y f=function([x,y],z) print f(2,3)
输出:
5.0
两个矩阵相加:
x=T.dmatrix('x') #注意这里使用矩阵类型进行格式化 y=T.dmatrix('y') z=x+y f2=function([x,y],z) print f2([1,2],[3,4],[10,20],[30,40])
到这里,手册里面出现了3个专业名词:
scalars ----标量:只有大小,没有方向。比如欧几里几何中的两点的距离。
matrix ----矩阵:一种数学标记方法,通常由行和列组成.
vectors ---向量:也常称为矢量,即有方向的量,与标量相对。
可以用来做加法的变量:
The following types are available: byte: bscalar, bvector, bmatrix, brow, bcol, btensor3, btensor4 16-bit integers: wscalar, wvector, wmatrix, wrow, wcol, wtensor3, wtensor4 32-bit integers: iscalar, ivector, imatrix, irow, icol, itensor3, itensor4 64-bit integers: lscalar, lvector, lmatrix, lrow, lcol, ltensor3, ltensor4 float: fscalar, fvector, fmatrix, frow, fcol, ftensor3, ftensor4 double: dscalar, dvector, dmatrix, drow, dcol, dtensor3, dtensor4 complex: cscalar, cvector, cmatrix, crow, ccol, ctensor3, ctensor4
import numpy import theano.tensor as T from theano import function #from numpy import asarray #from PIL import Image #im=Image.open("/Users/chaimwu/Desktop/test.png") #im.rotate(45).show() print "OK!" #print random.rand(4,4) print numpy.asarray([1,2],[3,4],[5,6]).shape print numpy.asarray([1,2],[3,4],[5,6])[2,0] a = numpy.asarray([1.0, 2.0, 3.0]) b=2.0 print a*b print b*a x=T.dscalar('x') y=T.dscalar('y') z=x+y f1=function([x,y],z) print f1(1,3) x=T.dmatrix('x') y=T.dmatrix('y') z=x+y f2=function([x,y],z) print f2([1,2],[3,4],[10,20],[30,40]) x=T.dmatrix() y=T.dmatrix() z=x+2**y f3=function([x,y],z) print f3([1,2],[3,4],[10,20],[30,40]) x=T.dvector() y=T.dvector() z=2*x+2**y f4=function([x,y],z) print f4([2,3],[4,5])