zoukankan      html  css  js  c++  java
  • 求两条线段的交点

      两条线段的两个端点坐标(x1,y1) (x2,y2) (x3,y3) (x4,y4)

      b1=(y2-y1)*x1+(x1-x2)*y1

      b2=(y4-y3)*x3+(x3-x4)*y3

      D=(x2-x1)(y4-y3)-(x4-x3)(y2-y1)

      D1=b2*(x2-x1)-b1*(x4-x3)

      D2=b2*(y2-y1)-b1*(y4-y3)

      交点(x0,y0)

      x0=D1/D   y0=D2/D

    推导:http://www.cnblogs.com/dwdxdy/p/3230485.html

    E. Covered Points
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You are given nn segments on a Cartesian plane. Each segment's endpoints have integer coordinates. Segments can intersect with each other. No two segments lie on the same line.

    Count the number of distinct points with integer coordinates, which are covered by at least one segment.

    Input

    The first line contains a single integer nn (1n10001≤n≤1000) — the number of segments.

    Each of the next nn lines contains four integers Axi,Ayi,Bxi,ByiAxi,Ayi,Bxi,Byi (106Axi,Ayi,Bxi,Byi106−106≤Axi,Ayi,Bxi,Byi≤106) — the coordinates of the endpoints AA, BB (ABA≠B) of the ii-th segment.

    It is guaranteed that no two segments lie on the same line.

    Output

    Print a single integer — the number of distinct points with integer coordinates, which are covered by at least one segment.

    Examples
    input
    9
    0 0 4 4
    -1 5 4 0
    4 0 4 4
    5 2 11 2
    6 1 6 7
    5 6 11 6
    10 1 10 7
    7 0 9 8
    10 -1 11 -1
    output
    42
    input
    4
    -1 2 1 2
    -1 0 1 0
    -1 0 0 3
    0 3 1 0
    output
    7

    The image for the first example:

    Several key points are marked blue, the answer contains some non-marked points as well.

    The image for the second example:

    求线段进过的整数点。线段经过的点,为x轴长度,与y轴长度的gcd。
    #include<bits/stdc++.h>
    #define ll long long
    using namespace std;
    
    struct Point{
        ll x,y;
        Point(ll x=0,ll y=0):x(x),y(y){};
    };
    
    ll gcd(ll a,ll b)
    {
        return a==0?b:gcd(b%a,a);
    }
    
    bool cheak(ll op1,ll a,ll b){
        if(a>b)
            swap(a,b);
        return op1>=a&&op1<=b;
    }
    
    Point point_of_intersection(Point f1,Point f2,Point f3,Point f4,bool &mark)
    {
        ll a1,a2,b1,b2,c1,c2,c3,c4,D,D1,D2;
        a1=f2.y-f1.y;
        a2=f1.x-f2.x;
        b1=a1*f1.x+a2*f1.y;
        ///b1=(y2-y1)*x1+(x1-x2)*y1
        c1=f4.y-f3.y;
        c2=f3.x-f4.x;
        b2=c1*f3.x+c2*f3.y;
        ///b2=(y4-y3)*x3+(x3-x4)*y3
        c3=f2.x-f1.x;
        c4=f4.x-f3.x;
    
        D=c3*c1-c4*a1;
        Point res;
        if(D==0){
            mark=false;
            return res;
        }
        D1=b2*c3-b1*c4;
        if(D1%D){
            mark=false;
            return res;
        }
        res.x=int(D1/D);
    
        D2=b2*a1-b1*c1;
        if(D2%D){
            mark=false;
            return res;
        }
        res.y=int(D2/D);
    
        if(!cheak(res.x,f1.x,f2.x)||!cheak(res.x,f3.x,f4.x)){
            mark=false; return res;
        }
        if(!cheak(res.y,f1.y,f2.y)||!cheak(res.y,f3.y,f4.y)){
            mark=false; return res;
        }
        return res;
    }
    
    Point edge[1006][2];
    int main()
    {
        int n;
        while( ~scanf("%d",&n)){
            for(int i=1;i<=n;i++){
                scanf("%lld%lld%lld%lld",&edge[i][0].x,&edge[i][0].y,&edge[i][1].x,&edge[i][1].y);
            }
    
            set<pair<ll,ll> > re;
            long long ans=0,tmp;
            bool mark;
            for(int i=1;i<=n;i++){
                tmp=gcd(abs(edge[i][0].x-edge[i][1].x),abs(edge[i][0].y-edge[i][1].y))+1;
                re.clear();
                for(int j=1;j<i;j++){
                    mark=true;
                    Point res=point_of_intersection(edge[i][0],edge[i][1],edge[j][0],edge[j][1],mark);
                    if(mark)
                        re.insert(make_pair(res.x,res.y));
                }
                ans+=tmp-re.size();
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }
    

      

  • 相关阅读:
    Unity3D脚本修改默认编码界面
    Winform异步初始化UserControl的问题
    Windows API实现移动窗体
    BackgroundWorder控件
    Winform复杂界面异步加载
    TabControl设置选项卡的大小
    VS2010尝试运行项目时出错,无法启动程序
    winform开发-CheckedListBox控件
    tomcat配置https访问
    用户svn密码自定义
  • 原文地址:https://www.cnblogs.com/ZQUACM-875180305/p/10149769.html
Copyright © 2011-2022 走看看