zoukankan      html  css  js  c++  java
  • python操作excel

    关于excel,大部分操作应该主要用于数据分析,其中,最主流的方式应该是采用pandas库,这里主要介绍几种方式来读写excel

    读取excel数据

    处理一般的excel,尤其没有合并单元格之类的情况时,我们可以采用普通的方法

    这里采用xlrd库

    • 无单元格合并的情况下

      import xlrd
      
      def parse_list(data):
          """
          parse a list
          :param data: list
          :return:
          """
          data_list = []
          for i in range(1, len(data)):
              data_dict = {}
              for index, key in enumerate(data[0]):
                  data_dict[key] = data[i][index]
              data_list.append(data_dict)
          return data_list
      
      def read_excel(filename, sheet=None):
          """
          read excel and parse every line
      
          :param name: file of absolute path
          :return: some dict which is about everyline of list
          """
          workbook = xlrd.open_workbook(filename)
          total_data = []
          if sheet:
              sh = workbook.sheet_by_name(sheet)
              for row in range(0, sh.nrows):
                  row_list = sh.row_values(row)
                  total_data.append(row_list)
          return parse_list(total_data)
      

      上述方法主要针对特定的sheet,当然,根据上述方法也也可进行改变,读取所有的sheet

      关键方法在于read_excel,所以我们来改写该方法

      import xlrd
      def read_excel(filename):
          """
          read excel and parse every line
      
          :param name: file of absolute path
          :return: some dict which is about everyline of list
          """
          workbook = xlrd.open_workbook(filename)
          total_data = []
          name_sheets = workbook.sheet_names()
          for sheet in name_sheets:
              sh = workbook.sheet_by_name(sheet)
              for row in range(0, sh.nrows):
                  row_list = sh.row_values(row)
                  total_data.append(row_list)
          return parse_list(total_data)
      
    • 主要用于处理合并存在合并单元格的情况

      import xlrd
      
      
      def get_excel():
          data_list = []
          with xlrd.open_workbook(r'D:325.xlsx') as workbook:
              name_sheets = workbook.sheet_names()  # 获取Excel的sheet表列表,存储是sheet表名
              for index in name_sheets:  # for 循环读取每一个sheet表的内容
                  apply_dic = []
                  sheet_info = workbook.sheet_by_name(index)  # 根据表名获取表中的所有内容,sheet_info也是列表,列表中的值是每个单元格里值
                  first_line = sheet_info.row_values(0)  # 获取首行,我这里的首行是表头,我打算用表头作为字典的key,每一行数据对应表头的value,每一行组成一个字典
                  values_merge_cell = merge_cell(sheet_info)  # 这里是调用处理合并单元格的函数
                  for i in range(1, sheet_info.nrows):  # 开始为组成字典准备数据
                      other_line = sheet_info.row_values(i)
                      for key in values_merge_cell.keys():
                          if key[0] == i:
                              other_line[key[1]] = values_merge_cell[key]
                      # print(other_line)
                      dic = list_dic(first_line, other_line)  # 调用组合字典的函数,传入key和value,字典生成
                      apply_dic.append(dic)
                  data_list.append({'index': index, 'data': apply_dic})
          return data_list
      
      
      def list_dic(list1, list2):
          '''
          two lists merge a dict,a list as key,other list as value
          :param list1:key
          :param list2:value
          :return:dict
          '''
          dic = dict(map(lambda x, y: [x, y], list1, list2))
          return dic
      
      
      def merge_cell(sheet_info):
          '''
          #handle Merge transverse cells and handle Merge Vertical Cells, assign empty cells,
          :param rlow:row, include row exclusive of row_range
          :param rhigh:row_range
          :param clow:col, include col exclusive of col_range
          :param chigh:col_range
          :param sheet_info:object of sheet
          :return:dic contain all of empty cells value
          '''
          merge = {}
          merge_cells = sheet_info.merged_cells
          for (rlow, rhigh, clow, chigh) in merge_cells:
              value_mg_cell = sheet_info.cell_value(rlow, clow)
              if rhigh - rlow == 1:
                  # Merge transverse cells
                  for n in range(chigh - clow - 1):
                      merge[(rlow, clow + n + 1)] = value_mg_cell
              elif chigh - clow == 1:
                  # Merge Vertical Cells
                  for n in range(rhigh - rlow - 1):
                      merge[(rlow + n + 1, clow)] = value_mg_cell
          return merge
      
      
      if __name__ == '__main__':
          get_excel()
      
      

    写excel

    • 生成xlsx,使用pandas

      import pandas as pd
      def write_excel(data, filename, keys=''):
          data_df = pd.DataFrame(data)
          if keys != '':
              data_df.columns = list(keys)
          writer = pd.ExcelWriter('{}.xlsx'.format(filename))
          data_df.to_excel(writer, index=None)
          writer.save()
      
    • 生成csv

      import csv
      def write_csv(name, data_list):
          fieldnames = data_list[0]
          print(fieldnames)
          with open(name + '.csv', mode='w', newline='', encoding='utf-8-sig') as csv_file:
              writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
              writer.writeheader()
              for data in data_list:
                  writer.writerow(data)
      

      当然,可以通过json去生成csv

      import json
      def json_to_csv(name):
          with open(name) as f:
              a = json.loads(f.read())
              write_csv(name, a)
      

      这里依旧可以使用pandas

      def data_to_csv(data_list, csv_key, name):
          """
          save data to csv
          :param data_list: data
          :param csv_key: csv column
          :param name: file name
          :return:
          """
          final_data = []
          for data in data_list:
              sign_key = []
              for key, value in data.items():
                  sign_key.append(value)
              final_data.append(sign_key)
          # 将总数据转化为data frame再输出
          df = pd.DataFrame(data=final_data,
                            columns=csv_key)
          df.to_csv(name + '.csv', index=False, encoding='utf-8_sig')
      
      
  • 相关阅读:
    Linux CAT与ECHO命令详解
    查看linux版本信息
    kubernetes(一)
    Chrome不安装插件实现页面长截图
    centos 升级glibc-2.17
    redis修改大key报Argument list too long的解决办法
    mysql打印用户权限的小技巧
    Centos6.5 自带的Python2.6.6 如何安装setuptools和pip
    TCP三次握手过程中涉及的队列知识的学习
    Docker volume权限导致的几个问题
  • 原文地址:https://www.cnblogs.com/ZSMblog/p/13154984.html
Copyright © 2011-2022 走看看