zoukankan      html  css  js  c++  java
  • 二叉树的四种遍历方法(C++)

    1.前序遍历

    前序遍历:先遍历根节点,再遍历左子树,最后遍历右子树(根-左-右)

    测试代码:

    // 二叉树的三种遍历
    // 1.前序遍历
    // 2.中序遍历
    // 3.后序遍历
    
    #include <cstdio>
    #include <stack>
    #include <vector>
    #include "BinaryTree.h"
    
    using namespace std;
    
    void visitAlongLeftBranch(BinaryTreeNode* , vector<int>& , stack<BinaryTreeNode*>&);
    
    void TraverseBinaryTree(BinaryTreeNode* pRoot, vector<int>& treeNodes)  //二叉树前序遍历算法(迭代版)
    {
        stack<BinaryTreeNode*> S; //辅助栈
    
        while (true)
        {
            visitAlongLeftBranch(pRoot, treeNodes, S);  //从当前节点逐批访问
            if (S.empty()) break; //栈为空, 弹出
            pRoot = S.top();  //弹出下一批的起点
            S.pop();
        }
    }
    
    //从当前节点出发, 沿左分支不断深入, 直至没有左分支的节点; 沿途节点遇到后立即访问
    void visitAlongLeftBranch(BinaryTreeNode* pRoot, vector<int>& treeNodes, stack<BinaryTreeNode*>& S)
    {
        while (pRoot)
        {
            treeNodes.push_back(pRoot->m_nValue); //访问当前节点
            S.push(pRoot->m_pRight); //右子节点入栈暂存
            pRoot = pRoot->m_pLeft; //沿左分支深入一层
        }
    }
    
    // ====================测试代码====================
    void Test(const char* testName, BinaryTreeNode* pRoot, 
        vector<int> expectedPre, vector<int> expectedIn, vector<int> expectedPost, int expectedLength)
    {
        if (testName != nullptr)
            printf("%s begins: ", testName);
    
        vector<int> treeNodes;  //保存遍历值
        TraverseBinaryTree(pRoot, treeNodes);
        int length = treeNodes.size();
    
        bool flag = true;  //标志位
        if (length != expectedLength) flag = false;  //长度不一致, 则遍历算法错误
    
        for (int i = 0; i < length; ++i)  //顺序不一致, 则遍历算法错误
        {
            if (treeNodes[i] != expectedPre[i])  //注意:遍历期望值在这里改
                flag = false;
        }
        
        if (flag)
            printf("Passed.");
        else
            printf("Failed.");
    
        //打印遍历值
        printf("
    Expected: ");
        for (int i = 0; i < expectedLength; ++i)
            printf("%d ", expectedPre[i]);  //注意:遍历期望值在这里改
    
        printf("
    Actual:   ");
        for (int i = 0; i < length; ++i)
            printf("%d ", treeNodes[i]);
        printf("
    
    ");
    }
    
    // 1.满二叉树
    //            10
    //          /    
    //         6      14
    //        /      /
    //       4  8   12  16
    void Test1()
    {
        BinaryTreeNode* pNode10 = CreateBinaryTreeNode(10);
        BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
        BinaryTreeNode* pNode14 = CreateBinaryTreeNode(14);
        BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
        BinaryTreeNode* pNode8 = CreateBinaryTreeNode(8);
        BinaryTreeNode* pNode12 = CreateBinaryTreeNode(12);
        BinaryTreeNode* pNode16 = CreateBinaryTreeNode(16);
    
        ConnectTreeNodes(pNode10, pNode6, pNode14);
        ConnectTreeNodes(pNode6, pNode4, pNode8);
        ConnectTreeNodes(pNode14, pNode12, pNode16);
    
        vector<int> expectedPre = {10, 6, 4, 8, 14, 12, 16};
        vector<int> expectedIn = {4, 6, 8, 10, 12, 14, 16};
        vector<int> expectedPost = {4, 8, 6, 12, 16, 14, 10};
    
        Test("Test1", pNode10, expectedPre, expectedIn, expectedPost, 7);
    
        DestroyTree(pNode10);
    }
    
    // 2.完全二叉树
    //            10
    //          /    
    //         6      14
    //        /      /
    //       4  8   12
    void Test2()
    {
        BinaryTreeNode* pNode10 = CreateBinaryTreeNode(10);
        BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
        BinaryTreeNode* pNode14 = CreateBinaryTreeNode(14);
        BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
        BinaryTreeNode* pNode8 = CreateBinaryTreeNode(8);
        BinaryTreeNode* pNode12 = CreateBinaryTreeNode(12);
    
        ConnectTreeNodes(pNode10, pNode6, pNode14);
        ConnectTreeNodes(pNode6, pNode4, pNode8);
        ConnectTreeNodes(pNode14, pNode12, nullptr);
    
        vector<int> expectedPre = { 10, 6, 4, 8, 14, 12};
        vector<int> expectedIn = { 4, 6, 8, 10, 12, 14};
        vector<int> expectedPost = { 4, 8, 6, 12, 14, 10 };
    
        Test("Test2", pNode10, expectedPre, expectedIn, expectedPost, 6);
    
        DestroyTree(pNode10);
    }
    
    // 3.二叉树
    //            10
    //          /    
    //         6      14
    //               /
    //          8   12  
    //         /
    //        4
    void Test3()
    {
        BinaryTreeNode* pNode10 = CreateBinaryTreeNode(10);
        BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
        BinaryTreeNode* pNode14 = CreateBinaryTreeNode(14);
        BinaryTreeNode* pNode8 = CreateBinaryTreeNode(8);
        BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
        BinaryTreeNode* pNode12 = CreateBinaryTreeNode(12);
    
        ConnectTreeNodes(pNode10, pNode6, pNode14);
        ConnectTreeNodes(pNode6, nullptr , pNode8);
        ConnectTreeNodes(pNode8, pNode4, nullptr);
        ConnectTreeNodes(pNode14, pNode12, nullptr);
    
        vector<int> expectedPre = { 10, 6, 8, 4, 14, 12 };
        vector<int> expectedIn = { 6, 4, 8, 10, 12, 14 };
        vector<int> expectedPost = { 4, 8, 6, 12, 14, 10 };
    
        Test("Test3", pNode10, expectedPre, expectedIn, expectedPost, 6);
    
        DestroyTree(pNode10);
    }
    
    // 4.只有最左侧通路
    //               5
    //              /
    //             4
    //            /
    //           3
    //          /
    //         2
    //        /
    //       1
    void Test4()
    {
        BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
        BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
        BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
        BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
        BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
    
        ConnectTreeNodes(pNode5, pNode4, nullptr);
        ConnectTreeNodes(pNode4, pNode3, nullptr);
        ConnectTreeNodes(pNode3, pNode2, nullptr);
        ConnectTreeNodes(pNode2, pNode1, nullptr);
    
        vector<int> expectedPre = {5, 4, 3, 2, 1};
        vector<int> expectedIn = {1, 2, 3, 4, 5};
        vector<int> expectedPost = {1, 2, 3, 4, 5};
    
        Test("Test4", pNode5, expectedPre, expectedIn, expectedPost, 5);
    
        DestroyTree(pNode5);
    }
    
    // 4.只有最右侧通路
    // 1
    //  
    //   2
    //    
    //     3
    //      
    //       4
    //        
    //         5
    void Test5()
    {
        BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
        BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
        BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
        BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
        BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
    
        ConnectTreeNodes(pNode1, nullptr, pNode2);
        ConnectTreeNodes(pNode2, nullptr, pNode3);
        ConnectTreeNodes(pNode3, nullptr, pNode4);
        ConnectTreeNodes(pNode4, nullptr, pNode5);
    
        vector<int> expectedPre = {1, 2, 3, 4, 5};
        vector<int> expectedIn = { 1, 2, 3, 4, 5 };
        vector<int> expectedPost = {5, 4, 3, 2, 1};
    
        Test("Test5", pNode1, expectedPre, expectedIn, expectedPost, 5);
    
        DestroyTree(pNode1);
    }
    
    // 树中只有1个结点
    void Test6()
    {
        BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
    
        vector<int> expectedPre = {1};
        vector<int> expectedIn = {1};
        vector<int> expectedPost = {1};
    
        Test("Test6", pNode1, expectedPre, expectedIn, expectedPost, 1);
    
        DestroyTree(pNode1);
    }
    
    // 树中没有结点
    void Test7()
    {
        vector<int> expectedPre = {};
        vector<int> expectedIn = {};
        vector<int> expectedPost = {};
    
        Test("Test7", nullptr, expectedPre, expectedIn, expectedPost, 0);
    }
    
    int main(int argc, char* argv[])
    {
        Test1();
        Test2();
        Test3();
        Test4();
        Test5();
        Test6();
        Test7();
    
        return 0;
    }
    前序遍历测试代码

    1.1 基于递归实现

    void TraverseBinaryTree(BinaryTreeNode* pRoot, vector<int>& treeNodes)  //二叉树前序遍历算法(递归版)
    {
        if (pRoot == nullptr)
            return;
    
        treeNodes.push_back(pRoot->m_nValue);
        TraverseBinaryTree(pRoot->m_pLeft, treeNodes);
        TraverseBinaryTree(pRoot->m_pRight, treeNodes);
    }

    1.2 基于迭代实现

     由于没有指向父节点的指针,所以需要辅助栈来记录路径中的右子节点。

    void visitAlongLeftBranch(BinaryTreeNode* , vector<int>& , stack<BinaryTreeNode*>&);
    
    void TraverseBinaryTree(BinaryTreeNode* pRoot, vector<int>& treeNodes)  //二叉树前序遍历算法(迭代版)
    {
        stack<BinaryTreeNode*> S; //辅助栈
    
        while (true)
        {
            visitAlongLeftBranch(pRoot, treeNodes, S);  //从当前节点逐批访问
            if (S.empty()) break; //栈为空, 弹出
            pRoot = S.top();  //弹出下一批的起点
            S.pop();
        }
    }
    
    //从当前节点出发, 沿左分支不断深入, 直至没有左分支的节点; 沿途节点遇到后立即访问
    void visitAlongLeftBranch(BinaryTreeNode* pRoot, vector<int>& treeNodes, stack<BinaryTreeNode*>& S)
    {
        while (pRoot)
        {
            treeNodes.push_back(pRoot->m_nValue); //访问当前节点
            S.push(pRoot->m_pRight); //右子节点入栈暂存
            pRoot = pRoot->m_pLeft; //沿左分支深入一层
        }
    }

     LeetCode

    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:
        vector<int> preorderTraversal(TreeNode* root) {
            
            vector<int> ret;  //保存路径值
            stack<TreeNode*> S;  //辅助栈
    
            while (true)
            {
                if (root)  //寻找最左节点
                {
                    ret.push_back(root->val);  //中途节点直接访问
                    S.push(root->right);  //暂存右子节点
                    root = root->left;
                }
                else if (!S.empty())
                {
                    root = S.top(); S.pop();
                }
                else
                    break;
            }
            return ret;
        }
    };

    2.中序遍历

    中序遍历:先遍历左子树,再遍历根节点,最后遍历右子树(左-根-右)

     测试代码:

    // 二叉树的三种遍历
    // 1.前序遍历
    // 2.中序遍历
    // 3.后序遍历
    
    #include <cstdio>
    #include <stack>
    #include <vector>
    #include "BinaryTree.h"
    
    using namespace std;
    
    void goAlongLeftBranch(BinaryTreeNode*, stack<BinaryTreeNode*>&);
    
    void TraverseBinaryTree(BinaryTreeNode* pRoot, vector<int>& treeNodes)  //二叉树中序遍历算法(迭代版#1)
    {
        stack<BinaryTreeNode*> S; //辅助栈
    
        while (true)
        {
            goAlongLeftBranch(pRoot, S);  //从当前节点出发,逐批入栈
            if (S.empty()) break;  //直至所有节点处理完毕
            pRoot = S.top();  //弹出栈顶节点并访问
            S.pop();
            treeNodes.push_back(pRoot->m_nValue);
            pRoot = pRoot->m_pRight;  //转向右子树
        }
    }
    
    //从当前节点出发, 沿左分支不断深入, 直至没有左分支的节点
    void goAlongLeftBranch(BinaryTreeNode* pRoot, stack<BinaryTreeNode*>& S)
    {
        while (pRoot) //当前节点入栈后随机向左侧分支深入, 迭代到无左子节点
        {
            S.push(pRoot);
            pRoot = pRoot->m_pLeft;
        }
    }
    
    // ====================测试代码====================
    void Test(const char* testName, BinaryTreeNode* pRoot, 
        vector<int> expectedPre, vector<int> expectedIn, vector<int> expectedPost, int expectedLength)
    {
        if (testName != nullptr)
            printf("%s begins: ", testName);
    
        vector<int> treeNodes;  //保存遍历值
        TraverseBinaryTree(pRoot, treeNodes);
        int length = treeNodes.size();
    
        bool flag = true;  //标志位
        if (length != expectedLength) flag = false;  //长度不一致, 则遍历算法错误
    
        for (int i = 0; i < length; ++i)  //顺序不一致, 则遍历算法错误
        {
            if (treeNodes[i] != expectedIn[i])  //注意:遍历期望值在这里改
                flag = false;
        }
        
        if (flag)
            printf("Passed.");
        else
            printf("Failed.");
    
        //打印遍历值
        printf("
    Expected: ");
        for (int i = 0; i < expectedLength; ++i)
            printf("%d ", expectedIn[i]);  //注意:遍历期望值在这里改
    
        printf("
    Actual:   ");
        for (int i = 0; i < length; ++i)
            printf("%d ", treeNodes[i]);
        printf("
    
    ");
    }
    
    // 1.满二叉树
    //            10
    //          /    
    //         6      14
    //        /      /
    //       4  8   12  16
    void Test1()
    {
        BinaryTreeNode* pNode10 = CreateBinaryTreeNode(10);
        BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
        BinaryTreeNode* pNode14 = CreateBinaryTreeNode(14);
        BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
        BinaryTreeNode* pNode8 = CreateBinaryTreeNode(8);
        BinaryTreeNode* pNode12 = CreateBinaryTreeNode(12);
        BinaryTreeNode* pNode16 = CreateBinaryTreeNode(16);
    
        ConnectTreeNodes(pNode10, pNode6, pNode14);
        ConnectTreeNodes(pNode6, pNode4, pNode8);
        ConnectTreeNodes(pNode14, pNode12, pNode16);
    
        vector<int> expectedPre = {10, 6, 4, 8, 14, 12, 16};
        vector<int> expectedIn = {4, 6, 8, 10, 12, 14, 16};
        vector<int> expectedPost = {4, 8, 6, 12, 16, 14, 10};
    
        Test("Test1", pNode10, expectedPre, expectedIn, expectedPost, 7);
    
        DestroyTree(pNode10);
    }
    
    // 2.完全二叉树
    //            10
    //          /    
    //         6      14
    //        /      /
    //       4  8   12
    void Test2()
    {
        BinaryTreeNode* pNode10 = CreateBinaryTreeNode(10);
        BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
        BinaryTreeNode* pNode14 = CreateBinaryTreeNode(14);
        BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
        BinaryTreeNode* pNode8 = CreateBinaryTreeNode(8);
        BinaryTreeNode* pNode12 = CreateBinaryTreeNode(12);
    
        ConnectTreeNodes(pNode10, pNode6, pNode14);
        ConnectTreeNodes(pNode6, pNode4, pNode8);
        ConnectTreeNodes(pNode14, pNode12, nullptr);
    
        vector<int> expectedPre = { 10, 6, 4, 8, 14, 12};
        vector<int> expectedIn = { 4, 6, 8, 10, 12, 14};
        vector<int> expectedPost = { 4, 8, 6, 12, 14, 10 };
    
        Test("Test2", pNode10, expectedPre, expectedIn, expectedPost, 6);
    
        DestroyTree(pNode10);
    }
    
    // 3.二叉树
    //            10
    //          /    
    //         6      14
    //               /
    //          8   12  
    //         /
    //        4
    void Test3()
    {
        BinaryTreeNode* pNode10 = CreateBinaryTreeNode(10);
        BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
        BinaryTreeNode* pNode14 = CreateBinaryTreeNode(14);
        BinaryTreeNode* pNode8 = CreateBinaryTreeNode(8);
        BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
        BinaryTreeNode* pNode12 = CreateBinaryTreeNode(12);
    
        ConnectTreeNodes(pNode10, pNode6, pNode14);
        ConnectTreeNodes(pNode6, nullptr , pNode8);
        ConnectTreeNodes(pNode8, pNode4, nullptr);
        ConnectTreeNodes(pNode14, pNode12, nullptr);
    
        vector<int> expectedPre = { 10, 6, 8, 4, 14, 12 };
        vector<int> expectedIn = { 6, 4, 8, 10, 12, 14 };
        vector<int> expectedPost = { 4, 8, 6, 12, 14, 10 };
    
        Test("Test3", pNode10, expectedPre, expectedIn, expectedPost, 6);
    
        DestroyTree(pNode10);
    }
    
    // 4.只有最左侧通路
    //               5
    //              /
    //             4
    //            /
    //           3
    //          /
    //         2
    //        /
    //       1
    void Test4()
    {
        BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
        BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
        BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
        BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
        BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
    
        ConnectTreeNodes(pNode5, pNode4, nullptr);
        ConnectTreeNodes(pNode4, pNode3, nullptr);
        ConnectTreeNodes(pNode3, pNode2, nullptr);
        ConnectTreeNodes(pNode2, pNode1, nullptr);
    
        vector<int> expectedPre = {5, 4, 3, 2, 1};
        vector<int> expectedIn = {1, 2, 3, 4, 5};
        vector<int> expectedPost = {1, 2, 3, 4, 5};
    
        Test("Test4", pNode5, expectedPre, expectedIn, expectedPost, 5);
    
        DestroyTree(pNode5);
    }
    
    // 4.只有最右侧通路
    // 1
    //  
    //   2
    //    
    //     3
    //      
    //       4
    //        
    //         5
    void Test5()
    {
        BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
        BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
        BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
        BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
        BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
    
        ConnectTreeNodes(pNode1, nullptr, pNode2);
        ConnectTreeNodes(pNode2, nullptr, pNode3);
        ConnectTreeNodes(pNode3, nullptr, pNode4);
        ConnectTreeNodes(pNode4, nullptr, pNode5);
    
        vector<int> expectedPre = {1, 2, 3, 4, 5};
        vector<int> expectedIn = { 1, 2, 3, 4, 5 };
        vector<int> expectedPost = {5, 4, 3, 2, 1};
    
        Test("Test5", pNode1, expectedPre, expectedIn, expectedPost, 5);
    
        DestroyTree(pNode1);
    }
    
    // 树中只有1个结点
    void Test6()
    {
        BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
    
        vector<int> expectedPre = {1};
        vector<int> expectedIn = {1};
        vector<int> expectedPost = {1};
    
        Test("Test6", pNode1, expectedPre, expectedIn, expectedPost, 1);
    
        DestroyTree(pNode1);
    }
    
    // 树中没有结点
    void Test7()
    {
        vector<int> expectedPre = {};
        vector<int> expectedIn = {};
        vector<int> expectedPost = {};
    
        Test("Test7", nullptr, expectedPre, expectedIn, expectedPost, 0);
    }
    
    int main(int argc, char* argv[])
    {
        Test1();
        Test2();
        Test3();
        Test4();
        Test5();
        Test6();
        Test7();
    
        return 0;
    }
    中序遍历测试代码

    2.1 基于递归实现

    void TraverseBinaryTree(BinaryTreeNode* pRoot, vector<int>& treeNodes)  //二叉树中序遍历算法(递归版)
    {
        if (pRoot == nullptr)
            return;
    
        TraverseBinaryTree(pRoot->m_pLeft, treeNodes);
        treeNodes.push_back(pRoot->m_nValue);
        TraverseBinaryTree(pRoot->m_pRight, treeNodes);
    }

    2.2 基于迭代实现

    void goAlongLeftBranch(BinaryTreeNode*, stack<BinaryTreeNode*>&);
    
    void TraverseBinaryTree(BinaryTreeNode* pRoot, vector<int>& treeNodes)  //二叉树中序遍历算法(迭代版#1)
    {
        stack<BinaryTreeNode*> S; //辅助栈
    
        while (true)
        {
            goAlongLeftBranch(pRoot, S);  //从当前节点出发,逐批入栈
            if (S.empty()) break;  //直至所有节点处理完毕
            pRoot = S.top();  //弹出栈顶节点并访问
            S.pop();
            treeNodes.push_back(pRoot->m_nValue);
            pRoot = pRoot->m_pRight;  //转向右子树
        }
    }
    
    //从当前节点出发, 沿左分支不断深入, 直至没有左分支的节点
    void goAlongLeftBranch(BinaryTreeNode* pRoot, stack<BinaryTreeNode*>& S)
    {
        while (pRoot) //当前节点入栈后随即向左侧分支深入, 迭代到无左子节点
        {
            S.push(pRoot);
            pRoot = pRoot->m_pLeft;
        }
    }
    void TraverseBinaryTree(BinaryTreeNode* pRoot, vector<int>& treeNodes)  //二叉树中序遍历算法(迭代版#2)
    {
        stack<BinaryTreeNode*> S; //辅助栈
    
        while (true)
        {
            if (pRoot)
            {
                S.push(pRoot);  //根节点进栈
                pRoot = pRoot->m_pLeft;  //深入遍历左子树
            }
            else if (!S.empty())
            {
                pRoot = S.top();  //尚未访问的最低祖先节点退栈
                S.pop();
                treeNodes.push_back(pRoot->m_nValue);
                pRoot = pRoot->m_pRight;  //转向右子树
            }
            else
                break;
        }
    }

    3. 后序遍历

    后序遍历:先遍历左子树,再遍历右子树,最后遍历根节点(左-右-根)

     测试代码:

    // 二叉树的三种遍历
    // 1.前序遍历
    // 2.中序遍历
    // 3.后序遍历
    
    #include <cstdio>
    #include <stack>
    #include <vector>
    #include "BinaryTree.h"
    
    using namespace std;
    
    void gotoHLVFL(stack<BinaryTreeNode*>&);
    
    void TraverseBinaryTree(BinaryTreeNode* pRoot, vector<int>& treeNodes)  //二叉树后序遍历算法(迭代版)
    {
        stack<BinaryTreeNode*> S; //辅助栈
    
        if (pRoot)
            S.push(pRoot);  //根节点进栈
    
        while (!S.empty())
        {
            if ((S.top()->m_pLeft != pRoot)  // 若栈顶非当前节点的父节点(必为其右兄)
                && (S.top()->m_pRight != pRoot))  // 在以其右兄为根的子树中, 找到HLVFL
                gotoHLVFL(S);
    
            pRoot = S.top(); S.pop();
            if (pRoot)
                treeNodes.push_back(pRoot->m_nValue);
        }
    }
    
    // 在以S栈顶节点为根的子树中, 找到最高左侧可见节点
    void gotoHLVFL(stack<BinaryTreeNode*>& S)
    {
        while (BinaryTreeNode* pRoot = S.top())  // 自顶向下, 反复检查当前节点(即栈顶)
        {
            if (pRoot->m_pLeft) // 尽可能向左
            {
                if (pRoot->m_pRight)  //若有右子节点, 优先入栈
                    S.push(pRoot->m_pRight);
                S.push(pRoot->m_pLeft);  //然后转入左子节点
            }
            else  //只有右子节点
                S.push(pRoot->m_pRight);
        }
        S.pop();
    }
    
    
    // ====================测试代码====================
    void Test(const char* testName, BinaryTreeNode* pRoot, 
        vector<int> expectedPre, vector<int> expectedIn, vector<int> expectedPost, int expectedLength)
    {
        if (testName != nullptr)
            printf("%s begins: ", testName);
    
        vector<int> treeNodes;  //保存遍历值
        TraverseBinaryTree(pRoot, treeNodes);
        int length = treeNodes.size();
    
        bool flag = true;  //标志位
        if (length != expectedLength) flag = false;  //长度不一致, 则遍历算法错误
    
        for (int i = 0; i < length; ++i)  //顺序不一致, 则遍历算法错误
        {
            if (treeNodes[i] != expectedPost[i])  //注意:遍历期望值在这里改
                flag = false;
        }
        
        if (flag)
            printf("Passed.");
        else
            printf("Failed.");
    
        //打印遍历值
        printf("
    Expected: ");
        for (int i = 0; i < expectedLength; ++i)
            printf("%d ", expectedPost[i]);  //注意:遍历期望值在这里改
    
        printf("
    Actual:   ");
        for (int i = 0; i < length; ++i)
            printf("%d ", treeNodes[i]);
        printf("
    
    ");
    }
    
    // 1.满二叉树
    //            10
    //          /    
    //         6      14
    //        /      /
    //       4  8   12  16
    void Test1()
    {
        BinaryTreeNode* pNode10 = CreateBinaryTreeNode(10);
        BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
        BinaryTreeNode* pNode14 = CreateBinaryTreeNode(14);
        BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
        BinaryTreeNode* pNode8 = CreateBinaryTreeNode(8);
        BinaryTreeNode* pNode12 = CreateBinaryTreeNode(12);
        BinaryTreeNode* pNode16 = CreateBinaryTreeNode(16);
    
        ConnectTreeNodes(pNode10, pNode6, pNode14);
        ConnectTreeNodes(pNode6, pNode4, pNode8);
        ConnectTreeNodes(pNode14, pNode12, pNode16);
    
        vector<int> expectedPre = {10, 6, 4, 8, 14, 12, 16};
        vector<int> expectedIn = {4, 6, 8, 10, 12, 14, 16};
        vector<int> expectedPost = {4, 8, 6, 12, 16, 14, 10};
    
        Test("Test1", pNode10, expectedPre, expectedIn, expectedPost, 7);
    
        DestroyTree(pNode10);
    }
    
    // 2.完全二叉树
    //            10
    //          /    
    //         6      14
    //        /      /
    //       4  8   12
    void Test2()
    {
        BinaryTreeNode* pNode10 = CreateBinaryTreeNode(10);
        BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
        BinaryTreeNode* pNode14 = CreateBinaryTreeNode(14);
        BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
        BinaryTreeNode* pNode8 = CreateBinaryTreeNode(8);
        BinaryTreeNode* pNode12 = CreateBinaryTreeNode(12);
    
        ConnectTreeNodes(pNode10, pNode6, pNode14);
        ConnectTreeNodes(pNode6, pNode4, pNode8);
        ConnectTreeNodes(pNode14, pNode12, nullptr);
    
        vector<int> expectedPre = { 10, 6, 4, 8, 14, 12};
        vector<int> expectedIn = { 4, 6, 8, 10, 12, 14};
        vector<int> expectedPost = { 4, 8, 6, 12, 14, 10 };
    
        Test("Test2", pNode10, expectedPre, expectedIn, expectedPost, 6);
    
        DestroyTree(pNode10);
    }
    
    // 3.二叉树
    //            10
    //          /    
    //         6      14
    //               /
    //          8   12  
    //         /
    //        4
    void Test3()
    {
        BinaryTreeNode* pNode10 = CreateBinaryTreeNode(10);
        BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
        BinaryTreeNode* pNode14 = CreateBinaryTreeNode(14);
        BinaryTreeNode* pNode8 = CreateBinaryTreeNode(8);
        BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
        BinaryTreeNode* pNode12 = CreateBinaryTreeNode(12);
    
        ConnectTreeNodes(pNode10, pNode6, pNode14);
        ConnectTreeNodes(pNode6, nullptr , pNode8);
        ConnectTreeNodes(pNode8, pNode4, nullptr);
        ConnectTreeNodes(pNode14, pNode12, nullptr);
    
        vector<int> expectedPre = { 10, 6, 8, 4, 14, 12 };
        vector<int> expectedIn = { 6, 4, 8, 10, 12, 14 };
        vector<int> expectedPost = { 4, 8, 6, 12, 14, 10 };
    
        Test("Test3", pNode10, expectedPre, expectedIn, expectedPost, 6);
    
        DestroyTree(pNode10);
    }
    
    // 4.只有最左侧通路
    //               5
    //              /
    //             4
    //            /
    //           3
    //          /
    //         2
    //        /
    //       1
    void Test4()
    {
        BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
        BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
        BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
        BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
        BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
    
        ConnectTreeNodes(pNode5, pNode4, nullptr);
        ConnectTreeNodes(pNode4, pNode3, nullptr);
        ConnectTreeNodes(pNode3, pNode2, nullptr);
        ConnectTreeNodes(pNode2, pNode1, nullptr);
    
        vector<int> expectedPre = {5, 4, 3, 2, 1};
        vector<int> expectedIn = {1, 2, 3, 4, 5};
        vector<int> expectedPost = {1, 2, 3, 4, 5};
    
        Test("Test4", pNode5, expectedPre, expectedIn, expectedPost, 5);
    
        DestroyTree(pNode5);
    }
    
    // 4.只有最右侧通路
    // 1
    //  
    //   2
    //    
    //     3
    //      
    //       4
    //        
    //         5
    void Test5()
    {
        BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
        BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
        BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
        BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
        BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
    
        ConnectTreeNodes(pNode1, nullptr, pNode2);
        ConnectTreeNodes(pNode2, nullptr, pNode3);
        ConnectTreeNodes(pNode3, nullptr, pNode4);
        ConnectTreeNodes(pNode4, nullptr, pNode5);
    
        vector<int> expectedPre = {1, 2, 3, 4, 5};
        vector<int> expectedIn = { 1, 2, 3, 4, 5 };
        vector<int> expectedPost = {5, 4, 3, 2, 1};
    
        Test("Test5", pNode1, expectedPre, expectedIn, expectedPost, 5);
    
        DestroyTree(pNode1);
    }
    
    // 树中只有1个结点
    void Test6()
    {
        BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
    
        vector<int> expectedPre = {1};
        vector<int> expectedIn = {1};
        vector<int> expectedPost = {1};
    
        Test("Test6", pNode1, expectedPre, expectedIn, expectedPost, 1);
    
        DestroyTree(pNode1);
    }
    
    // 树中没有结点
    void Test7()
    {
        vector<int> expectedPre = {};
        vector<int> expectedIn = {};
        vector<int> expectedPost = {};
    
        Test("Test7", nullptr, expectedPre, expectedIn, expectedPost, 0);
    }
    
    int main(int argc, char* argv[])
    {
        Test1();
        Test2();
        Test3();
        Test4();
        Test5();
        Test6();
        Test7();
    
        return 0;
    }
    后序遍历测试代码

    3.1 基于递归实现

    void TraverseBinaryTree(BinaryTreeNode* pRoot, vector<int>& treeNodes)  //二叉树后序遍历算法(递归版)
    {
        if (pRoot == nullptr)
            return;
    
        //后序遍历
        TraverseBinaryTree(pRoot->m_pLeft, treeNodes);
        TraverseBinaryTree(pRoot->m_pRight, treeNodes);
        treeNodes.push_back(pRoot->m_nValue);
    }

    3.2 基于迭代实现

    void gotoHLVFL(stack<BinaryTreeNode*>&);
    
    void TraverseBinaryTree(BinaryTreeNode* pRoot, vector<int>& treeNodes)  //二叉树后序遍历算法(迭代版)
    {
        stack<BinaryTreeNode*> S; //辅助栈
    
        if (pRoot)
            S.push(pRoot);  //根节点进栈
    
        while (!S.empty())
        {
            if ((S.top()->m_pLeft != pRoot)  // 若栈顶非当前节点的父节点(必为其右兄)
                && (S.top()->m_pRight != pRoot))  // 在以其右兄为根的子树中, 找到HLVFL
                gotoHLVFL(S);
    
            pRoot = S.top(); S.pop();
            if (pRoot)
                treeNodes.push_back(pRoot->m_nValue);
        }
    }
    
    // 在以S栈顶节点为根的子树中, 找到最高左侧可见节点
    void gotoHLVFL(stack<BinaryTreeNode*>& S)
    {
        while (BinaryTreeNode* pRoot = S.top())  // 自顶向下, 反复检查当前节点(即栈顶)
        {
            if (pRoot->m_pLeft) // 尽可能向左
            {
                if (pRoot->m_pRight)  //若有右子节点, 优先入栈
                    S.push(pRoot->m_pRight);
                S.push(pRoot->m_pLeft);  //然后转入左子节点
            }
            else  //只有右子节点
                S.push(pRoot->m_pRight);
        }
        S.pop();
    }

    4. 层次遍历

    void TraverseBinaryTree(BinaryTreeNode* pRoot, vector<int>& treeNodes)  //二叉树层次遍历算法(迭代版)
    {
        queue<BinaryTreeNode*> Q; //辅助栈
    
        Q.push(pRoot);  //根节点进栈
    
        while (!Q.empty())  //队列变空之前反复迭代
        {
            BinaryTreeNode* pRoot = Q.front();  //取出首节点并访问
            treeNodes.push_back(pRoot->m_nValue);
    
            if (pRoot->m_pLeft)
                Q.push(pRoot->m_pLeft);
    
            if (pRoot->m_pRight)
                Q.push(pRoot->m_pRight);
        }
    }

    可以参考之字形打印二叉树

    https://www.cnblogs.com/ZSY-blog/p/12602375.html

    调用代码:

    //==================================================================
    // 《剑指Offer——名企面试官精讲典型编程题》代码
    // 作者:何海涛
    //==================================================================
    
    #pragma once
    
    struct BinaryTreeNode 
    {
        int                    m_nValue; //节点data值
        BinaryTreeNode*        m_pLeft;  //左子节点
        BinaryTreeNode*        m_pRight; //右子节点
    };
    
    __declspec( dllexport ) BinaryTreeNode* CreateBinaryTreeNode(int value);
    __declspec( dllexport ) void ConnectTreeNodes(BinaryTreeNode* pParent, BinaryTreeNode* pLeft, BinaryTreeNode* pRight);
    __declspec( dllexport ) void PrintTreeNode(const BinaryTreeNode* pNode);
    __declspec( dllexport ) void PrintTree(const BinaryTreeNode* pRoot);
    __declspec( dllexport ) void DestroyTree(BinaryTreeNode* pRoot);
    BinaryTree.h
    //==================================================================
    // 《剑指Offer——名企面试官精讲典型编程题》代码
    // 作者:何海涛
    //==================================================================
    
    #include <cstdio>
    #include "BinaryTree.h"
    
    //新建一个父节点
    BinaryTreeNode* CreateBinaryTreeNode(int value)
    {
        BinaryTreeNode* pNode = new BinaryTreeNode();
        pNode->m_nValue = value;
        pNode->m_pLeft = nullptr;
        pNode->m_pRight = nullptr;
    
        return pNode;
    }
    
    //父节点连接左右子节点
    void ConnectTreeNodes(BinaryTreeNode* pParent, BinaryTreeNode* pLeft, BinaryTreeNode* pRight)
    {
        if(pParent != nullptr)
        {
            pParent->m_pLeft = pLeft;
            pParent->m_pRight = pRight;
        }
    }
    
    //打印当前父节点以及左右子节点
    void PrintTreeNode(const BinaryTreeNode* pNode)
    {
        if(pNode != nullptr)
        {
            printf("value of this node is: %d
    ", pNode->m_nValue);
    
            if(pNode->m_pLeft != nullptr)
                printf("value of its left child is: %d.
    ", pNode->m_pLeft->m_nValue);
            else
                printf("left child is nullptr.
    ");
    
            if(pNode->m_pRight != nullptr)
                printf("value of its right child is: %d.
    ", pNode->m_pRight->m_nValue);
            else
                printf("right child is nullptr.
    ");
        }
        else
        {
            printf("this node is nullptr.
    ");
        }
    
        printf("
    ");
    }
    
    //递归调用打印整个二叉树
    void PrintTree(const BinaryTreeNode* pRoot)
    {
        PrintTreeNode(pRoot);
    
        if(pRoot != nullptr)
        {
            if(pRoot->m_pLeft != nullptr)
                PrintTree(pRoot->m_pLeft);
    
            if(pRoot->m_pRight != nullptr)
                PrintTree(pRoot->m_pRight);
        }
    }
    
    //递归调用删除整个树
    void DestroyTree(BinaryTreeNode* pRoot)
    {
        if(pRoot != nullptr)
        {
            BinaryTreeNode* pLeft = pRoot->m_pLeft;
            BinaryTreeNode* pRight = pRoot->m_pRight;
    
            delete pRoot;
            pRoot = nullptr;
    
            DestroyTree(pLeft);
            DestroyTree(pRight);
        }
    }
    BinaryTree.cpp

    代码与图参考:

    [1] 剑指offer(第二版), 何海涛, 2011.

    [2] 数据结构(C++语言版), 邓俊辉, 2010.

  • 相关阅读:
    hdu 1599 find the mincost route (最小环与floyd算法)
    hdu 3371(prim算法)
    hdu 1598 find the most comfortable road (并查集+枚举)
    hdu 1879 继续畅通工程 (并查集+最小生成树)
    hdu 1272 小希的迷宫(并查集+最小生成树+队列)
    UVA 156 Ananagrams ---map
    POJ 3597 Polygon Division (DP)
    poj 3735 Training little cats 矩阵快速幂+稀疏矩阵乘法优化
    poj 3734 Blocks 快速幂+费马小定理+组合数学
    CodeForces 407B Long Path (DP)
  • 原文地址:https://www.cnblogs.com/ZSY-blog/p/12741544.html
Copyright © 2011-2022 走看看