zoukankan      html  css  js  c++  java
  • BZ4326 运输计划

    Time Limit: 30 Sec Memory Limit: 128 MB
    Submit: 2132 Solved: 1372

    Description

    公元 2044 年,人类进入了宇宙纪元。L 国有 n 个星球,还有 n?1 条双向航道,每条航道建立在两个星球之间,

    这 n-1 条航道连通了 L 国的所有星球。小 P 掌管一家物流公司, 该公司有很多个运输计划,每个运输计划形如

    :有一艘物流飞船需要从 ui 号星球沿最快的宇航路径飞行到 vi 号星球去。显然,飞船驶过一条航道是需要时间

    的,对于航道 j,任意飞船驶过它所花费的时间为 tj,并且任意两艘飞船之间不会产生任何干扰。为了鼓励科技

    创新, L 国国王同意小 P 的物流公司参与 L 国的航道建设,即允许小P 把某一条航道改造成虫洞,飞船驶过虫

    洞不消耗时间。在虫洞的建设完成前小 P 的物流公司就预接了 m 个运输计划。在虫洞建设完成后,这 m 个运输

    计划会同时开始,所有飞船一起出发。当这 m 个运输计划都完成时,小 P 的物流公司的阶段性工作就完成了。如

    果小 P 可以自由选择将哪一条航道改造成虫洞, 试求出小 P 的物流公司完成阶段性工作所需要的最短时间是多

    少?

    Input

    第一行包括两个正整数 n,m,表示 L 国中星球的数量及小 P 公司预接的运输计划的数量,星球从 1 到 n 编号。

    接下来 n-1 行描述航道的建设情况,其中第 i 行包含三个整数 ai,bi 和 ti,

    表示第 i 条双向航道修建在 ai 与 bi 两个星球之间,任意飞船驶过它所花费的时间为 ti。

    接下来 m 行描述运输计划的情况,其中第 j 行包含两个正整数 uj 和 vj,表示第 j 个运输计划是从 uj 号星球飞往 vj号星球。

    数据保证 1≤ui,vi≤n ,n,m<=300000

    数据保证 1≤ai,bi≤n 且 0≤ti≤1000。

    Output

    输出文件只包含一个整数,表示小 P 的物流公司完成阶段性工作所需要的最短时间。

    Sample Input

    6 3
    1 2 3
    1 6 4
    3 1 7
    4 3 6
    3 5 5
    3 6
    2 5
    4 5

    Sample Output

    11
    将第 1 条航道改造成虫洞: 则三个计划耗时分别为:11,12,11,故需要花费的时间为 12。
    将第 2 条航道改造成虫洞: 则三个计划耗时分别为:7,15,11,故需要花费的时间为 15。
    将第 3 条航道改造成虫洞: 则三个计划耗时分别为:4,8,11,故需要花费的时间为 11。
    将第 4 条航道改造成虫洞: 则三个计划耗时分别为:11,15,5,故需要花费的时间为 15。
    将第 5 条航道改造成虫洞: 则三个计划耗时分别为:11,10,6,故需要花费的时间为 11。
    故将第 3 条或第 5 条航道改造成虫洞均可使得完成阶段性工作的耗时最短,需要花费的时间为 11。


    阶段性工作所需要的最短时间想到二分
    对于个大于mid的路程显然都需要经过虫洞不然就超时了
    树上差分找出被每一个路程覆盖的边中的最大值,和最远路程与mid的差比较即可


    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #define M 1000000
    using namespace std;
    
    int i,m,n,j,k,x,y,z,ver[M],nex[M],edge[M],head[M],top[M],d[M],f[M],cnt,wson[M],c[M],maxx,tmp,w,size[M],g[M],cs[M];
    
    struct  vv
    {
    	int l,r,lc,z;
    } a[M];
    
    void add(int x,int y,int z)
    {
    	cnt+=1;
    	ver[cnt]=y; nex[cnt]=head[x]; head[x]=cnt; edge[cnt]=z;
    }
    
    void dfs1(int now,int fa)
    {
    	f[now]=fa; size[now]=1; d[now]=d[fa]+1;
    	for(int i=head[now];i;i=nex[i])
    	{
    		int t=ver[i];
    		if(t==fa) continue;
    		dfs1(t,now);
    		size[now]+=size[t];
    		if(size[t]>size[wson[now]])  wson[now]=t;
    	}	 
    }
    
    void dfs2(int now,int ttop)
    {
    	top[now]=ttop;
    	if(wson[now]) dfs2(wson[now],ttop);
    	for(int i=head[now];i;i=nex[i])
    	{
    		int t=ver[i];
    		if(top[t]) continue;
    		dfs2(t,t);
    	}
    }
    
    void dfs3(int now,int fa)
    {
    	for(int i=head[now];i;i=nex[i])
    	{
    		int t=ver[i];
    		if(t==fa) continue;
    		c[t]=c[now]+edge[i];
    		dfs3(t,now);
    	}
    }
    
    bool dfs4(int now,int fa,int ss)
    {
    	cs[now]+=g[now];
    	for(int i=head[now];i;i=nex[i])
    	{
    		int t=ver[i];
    		if(t==fa) continue;
    		if(dfs4(t,now,ss)) return 1;
    		if((cs[t]==w)&&(edge[i]>=ss))  return 1;
    		cs[now]+=cs[t];
    	}
    	return 0;
    }
    
    int  lca(int x,int y)
    {
    	while(top[x]!=top[y])
    	{
    		if(d[top[x]]<d[top[y]]) swap(x,y);	
    		x=f[top[x]]; 
    	}
    	if(d[x]<d[y]) return x;
    	else return y;
    }
    
    bool cmp(vv a,vv b)
    {
    	return a.z>b.z;
    }
    
    bool check(int x)
    {
    	memset(g,0,sizeof(g));
    	memset(cs,0,sizeof(cs));
    	w=0;
    	while(a[w+1].z>x) 
    	{
    		w+=1;
    		g[a[w].l]+=1;
    		g[a[w].r]+=1;
    		g[a[w].lc]-=2;
    	}	 
    	return dfs4(1,0,a[1].z-x);
    }
    
    int main() 
    {
    	scanf("%d%d",&n,&m);
    	for(i=1;i<n;i++)
    	{
    		scanf("%d%d%d",&x,&y,&z);
    		add(x,y,z);
    		add(y,x,z);
    	} 
    	for(i=1;i<=m;i++) scanf("%d%d",&a[i].l,&a[i].r);
    	dfs1(1,0); dfs2(1,1); dfs3(1,0);
    	for(i=1;i<=m;i++) 
    	{
    		a[i].lc=lca(a[i].l,a[i].r);
    		a[i].z=c[a[i].r]+c[a[i].l]-2*c[a[i].lc];
    		maxx=max(maxx,a[i].z);
    	}
    	sort(a+1,a+1+m,cmp);
    	int l=0, r=maxx;
    	while(l<=r)
    	{
    		int mid=(l+r)>>1;
    		if(check(mid)) r=mid-1,tmp=mid;
    		else l=mid+1;
    	}
    	printf("%d",tmp);
    }
    
  • 相关阅读:
    OO先导课——第二次上课
    OO先导课——第一次上课
    OO先导课——JAVA初见懵的知识合集
    OO先导课——作业(1)
    在驱动和应用程序间共享内存
    【求助】NdisSend,自定义数据包发送失败?
    HTTP协议详解(真的很经典)
    原始数据包的分析
    IP数据包的校验和算法
    基于IMD的包过滤防火墙原理与实现
  • 原文地址:https://www.cnblogs.com/ZUTTER/p/9657243.html
Copyright © 2011-2022 走看看