题目背景
SHOI2012 D2T1
题目描述
2046 年 OI 城的城市轨道交通建设终于全部竣工,由于前期规划周密,建成后的轨道交通网络由2n2n条地铁线路构成,组成了一个nn纵nn横的交通网。如下图所示,这2n2n条线路每条线路都包含nn个车站,而每个车站都在一组纵横线路的交汇处。
出于建设成本的考虑,并非每个车站都能够进行站内换乘,能够进行站内换乘的地铁站共有mm个,在下图中,标上方块标记的车站为换乘车站。已知地铁运行 1 站需要 2 分钟,而站内换乘需要步行 1 分钟。Serenade 想要知道,在不中途出站的前提下,他从学校回家最快需要多少时间(等车时间忽略不计)。
输入输出格式
输入格式:
第一行有两个整数n,mn,m。
接下去mm行每行两个整数x,yx,y,表示第xx条横向线路与第yy条纵向线路的交
汇站是站内换乘站。
接下去一行是四个整数x_1,y_1,x_2,y_2x1,y1,x2,y2。表示 Serenade 从学校回家时,在第 x_1x1条横向线路与第y_1y1条纵向线路的交汇站上车,在第x_2x2条横向线路与第y_2y2条纵向线路的交汇站下车。
输出格式:
输出文件只有一行,即 Serenade 在合理选择线路的情况下,回家所需要的时间。如果 Serenade 无法在不出站换乘的情况下回家,请输出-1。
说明
对于 30%的数据,nle 50,mle 1000n≤50,m≤1000;
对于 60%的数据,nle 500,mle 2000n≤500,m≤2000;
对于 100%的数据,nle 20000,mle 100000n≤20000,m≤100000;
对于每行每列暴力连边显然是要炸的
考虑只把相邻的点间连边,对于同行同列是没有影响的
然鹅转向就跪了
经过一番深思熟虑,我们可以把每个点拆开啊
对于每个点,横向建一个点,纵向建一个点,把这两个点间连边(edge=1)
然后最短路就行了
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#define M 1000000
#define LL long long
#define max(a,b) ((a)>(b)? (a):(b))
#define min(a,b) ((a)<(b)? (a):(b))
#define abs(a) ((a)>0? (a) :-(a))
using namespace std;
queue<int> q;
int i,m,n,j,k,ver[M],edge[M],head[M],nex[M],cnt,pre[M],sx,sy,ex,ey,b[M],d[M];
struct vv
{
int x,y,w;
} a[M];
void add(int x,int y,int z)
{
cnt+=1;
ver[cnt]=y, nex[cnt]=head[x], head[x]=cnt, edge[cnt]=z;
}
bool cmpx(vv a,vv b){return a.x==b.x? a.y<b.y : a.x<b.x;}
bool cmpy(vv a,vv b){return a.y==b.y? a.x<b.x : a.y<b.y;}
void spfa()
{
memset(d,0x3f,sizeof(d));
d[0]=b[0]=1;
q.push(0);
while(q.size())
{
int r=q.front(); q.pop();
b[r]=0;
for(int i=head[r];i;i=nex[i])
{
int t=ver[i];
if(d[r]+edge[i]<d[t])
{
d[t]=d[r]+edge[i];
if(!b[t]) q.push(t);
b[t]=1;
}
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(i=1;i<=m;i++) scanf("%d%d",&a[i].x,&a[i].y), a[i].w=i;
scanf("%d%d%d%d",&sx,&sy,&ex,&ey);
sort(a+1,a+1+m,cmpx);
for(i=2;i<=m;i++)
{
if(a[i].x==a[i-1].x) add(i,i-1,(a[i].y-a[i-1].y)*2), add(i-1,i,(a[i].y-a[i-1].y)*2);
if(a[i].x==sx) add(0,i,abs(a[i].y-sy)*2);
if(a[i].x==ex) add(i,m+1+m,abs(a[i].y-ey)*2);
}
sort(a+1,a+1+m,cmpy);
for(i=2;i<=m;i++)
{
if(a[i].x==a[i-1].x) add(i+m,i-1+m,(a[i].x-a[i-1].x)*2), add(i-1+m,i+m,(a[i].x-a[i-1].x)*2);
if(a[i].y==sy) add(0,i+m,abs(a[i].x-sx)*2);
if(a[i].y==ey) add(i+m,m+1+m,abs(a[i].x-ex)*2);
}
for(i=1;i<=m;i++) add(i,i+m,1), add(i+m,i,1);
spfa();
printf("%d",d[m+m+1]);
}