zoukankan      html  css  js  c++  java
  • [spoj 375]QTREE

    You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.

    We will ask you to perfrom some instructions of the following form:

    • CHANGE i ti : change the cost of the i-th edge to ti
      or
    • QUERY a b : ask for the maximum edge cost on the path from node a to node b

    Input

    The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.

    For each test case:

    • In the first line there is an integer N (N <= 10000),
    • In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 1000000),
    • The next lines contain instructions "CHANGE i ti" or "QUERY a b",
    • The end of each test case is signified by the string "DONE".

    There is one blank line between successive tests.

    Output

    For each "QUERY" operation, write one integer representing its result.

    Example

    Input:
    1
    
    3
    1 2 1
    2 3 2
    QUERY 1 2
    CHANGE 1 3
    QUERY 1 2
    DONE
    
    Output:
    1
    3

    树链剖分
      1 #include <cstdio>
      2 #include <algorithm>
      3 #include <iostream>
      4 #include <string.h>
      5 using namespace std;
      6 const int maxn = 10010;
      7 struct Tedge
      8 { int b, next; } e[maxn * 2];
      9 int tree[maxn];
     10 int zzz, n, z, edge, root, a, b, c;
     11 int d[maxn][3];
     12 int first[maxn], dep[maxn], w[maxn], fa[maxn], top[maxn], son[maxn], siz[maxn];
     13 char ch[10];
     14 
     15 void insert(int a, int b, int c){
     16     e[++edge].b = b;
     17     e[edge].next = first[a];
     18     first[a] = edge;
     19 }
     20 
     21 void dfs(int v){
     22     siz[v] = 1; son[v] = 0;
     23     for (int i = first[v]; i > 0; i = e[i].next)
     24         if (e[i].b != fa[v]){
     25             fa[e[i].b] = v;
     26             dep[e[i].b] = dep[v]+1;
     27             dfs(e[i].b);
     28             if (siz[e[i].b] > siz[son[v]]) son[v] = e[i].b;
     29             siz[v] += siz[e[i].b];
     30         }
     31 }
     32 
     33 void build_tree(int v, int tp){
     34     w[v] = ++ z; top[v] = tp;
     35     if (son[v] != 0) build_tree(son[v], top[v]);
     36     for (int i = first[v]; i > 0; i = e[i].next)
     37         if (e[i].b != son[v] && e[i].b != fa[v])
     38             build_tree(e[i].b, e[i].b);
     39 }
     40 
     41 void update(int root, int lo, int hi, int loc, int x){
     42     if (loc > hi || lo > loc) return;
     43     if (lo == hi)
     44     { tree[root] = x; return; }
     45     int mid = (lo + hi) / 2, ls = root * 2, rs = ls + 1;
     46     update(ls, lo, mid, loc, x);
     47     update(rs, mid+1, hi, loc, x);
     48     tree[root] = max(tree[ls], tree[rs]);
     49 }
     50 
     51 int maxi(int root, int lo, int hi, int l, int r){
     52     if (l > hi || r < lo) return 0;
     53     if (l <= lo && hi <= r) return tree[root];
     54     int mid = (lo + hi) / 2, ls = root * 2, rs = ls + 1;
     55     return max(maxi(ls, lo, mid, l, r), maxi(rs, mid+1, hi, l, r));
     56 }
     57 
     58 inline int find(int va, int vb){
     59     int f1 = top[va], f2 = top[vb], tmp = 0;
     60     while (f1 != f2){
     61         if (dep[f1] < dep[f2])
     62         { swap(f1, f2); swap(va, vb); }
     63         tmp = max(tmp, maxi(1, 1, z, w[f1], w[va]));
     64         va = fa[f1]; f1 = top[va];
     65     }
     66     if (va == vb) return tmp;
     67     if (dep[va] > dep[vb]) swap(va, vb);
     68     return max(tmp, maxi(1, 1, z, w[son[va]], w[vb]));  //
     69 }
     70 
     71 void init(){
     72     scanf("%d", &n);
     73     root = (n + 1) / 2;
     74     fa[root] = z = dep[root] = edge = 0;
     75     memset(siz, 0, sizeof(siz));
     76     memset(first, 0, sizeof(first));
     77     memset(tree, 0, sizeof(tree));
     78     for (int i = 1; i < n; i++){
     79         scanf("%d%d%d", &a, &b, &c);
     80         d[i][0] = a; d[i][1] = b; d[i][2] = c;
     81         insert(a, b, c);
     82         insert(b, a, c);
     83     }
     84     dfs(root);
     85     build_tree(root, root);    //
     86     for (int i = 1; i < n; i++){
     87         if (dep[d[i][0]] > dep[d[i][1]]) swap(d[i][0], d[i][1]);
     88         update(1, 1, z, w[d[i][1]], d[i][2]);
     89     }
     90 }
     91 
     92 inline void read(){
     93     ch[0] = ' ';
     94     while (ch[0] < 'C' || ch[0] > 'Q') scanf("%s", &ch);
     95 }
     96 
     97 void work()
     98 {
     99     for (read(); ch[0] != 'D'; read()){
    100         scanf("%d%d", &a, &b);
    101         if (ch[0] == 'Q') printf("%d
    ", find(a, b));
    102         else update(1, 1, z, w[d[a][1]], b);
    103     }
    104 }
    105 
    106 int main(){
    107     for (scanf("%d", &zzz); zzz > 0; zzz--){
    108         init();
    109         work();
    110     }
    111     return 0;
    112 }

    你让我变得苍白

    却依然天真的相信花儿会再次的盛开

  • 相关阅读:
    git_02_git常用操作命令
    git_01_上传第一个项目至git
    Jenkins持续集成_04_解决HTML测试报告样式丢失问题
    Jenkins持续集成_03_添加测试报告
    Jenkins持续集成_02_添加python项目&设置定时任务
    Jenkins持续集成_01_Mac安装配置
    Mac获取Jenkins管理员初始密码
    (appium+python)UI自动化_10_adb常用命令
    安卓monkey自动化测试,软硬回车
    冒烟测试
  • 原文地址:https://www.cnblogs.com/ZYBGMZL/p/6906454.html
Copyright © 2011-2022 走看看