zoukankan      html  css  js  c++  java
  • [spoj 375]QTREE

    You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.

    We will ask you to perfrom some instructions of the following form:

    • CHANGE i ti : change the cost of the i-th edge to ti
      or
    • QUERY a b : ask for the maximum edge cost on the path from node a to node b

    Input

    The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.

    For each test case:

    • In the first line there is an integer N (N <= 10000),
    • In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 1000000),
    • The next lines contain instructions "CHANGE i ti" or "QUERY a b",
    • The end of each test case is signified by the string "DONE".

    There is one blank line between successive tests.

    Output

    For each "QUERY" operation, write one integer representing its result.

    Example

    Input:
    1
    
    3
    1 2 1
    2 3 2
    QUERY 1 2
    CHANGE 1 3
    QUERY 1 2
    DONE
    
    Output:
    1
    3

    树链剖分
      1 #include <cstdio>
      2 #include <algorithm>
      3 #include <iostream>
      4 #include <string.h>
      5 using namespace std;
      6 const int maxn = 10010;
      7 struct Tedge
      8 { int b, next; } e[maxn * 2];
      9 int tree[maxn];
     10 int zzz, n, z, edge, root, a, b, c;
     11 int d[maxn][3];
     12 int first[maxn], dep[maxn], w[maxn], fa[maxn], top[maxn], son[maxn], siz[maxn];
     13 char ch[10];
     14 
     15 void insert(int a, int b, int c){
     16     e[++edge].b = b;
     17     e[edge].next = first[a];
     18     first[a] = edge;
     19 }
     20 
     21 void dfs(int v){
     22     siz[v] = 1; son[v] = 0;
     23     for (int i = first[v]; i > 0; i = e[i].next)
     24         if (e[i].b != fa[v]){
     25             fa[e[i].b] = v;
     26             dep[e[i].b] = dep[v]+1;
     27             dfs(e[i].b);
     28             if (siz[e[i].b] > siz[son[v]]) son[v] = e[i].b;
     29             siz[v] += siz[e[i].b];
     30         }
     31 }
     32 
     33 void build_tree(int v, int tp){
     34     w[v] = ++ z; top[v] = tp;
     35     if (son[v] != 0) build_tree(son[v], top[v]);
     36     for (int i = first[v]; i > 0; i = e[i].next)
     37         if (e[i].b != son[v] && e[i].b != fa[v])
     38             build_tree(e[i].b, e[i].b);
     39 }
     40 
     41 void update(int root, int lo, int hi, int loc, int x){
     42     if (loc > hi || lo > loc) return;
     43     if (lo == hi)
     44     { tree[root] = x; return; }
     45     int mid = (lo + hi) / 2, ls = root * 2, rs = ls + 1;
     46     update(ls, lo, mid, loc, x);
     47     update(rs, mid+1, hi, loc, x);
     48     tree[root] = max(tree[ls], tree[rs]);
     49 }
     50 
     51 int maxi(int root, int lo, int hi, int l, int r){
     52     if (l > hi || r < lo) return 0;
     53     if (l <= lo && hi <= r) return tree[root];
     54     int mid = (lo + hi) / 2, ls = root * 2, rs = ls + 1;
     55     return max(maxi(ls, lo, mid, l, r), maxi(rs, mid+1, hi, l, r));
     56 }
     57 
     58 inline int find(int va, int vb){
     59     int f1 = top[va], f2 = top[vb], tmp = 0;
     60     while (f1 != f2){
     61         if (dep[f1] < dep[f2])
     62         { swap(f1, f2); swap(va, vb); }
     63         tmp = max(tmp, maxi(1, 1, z, w[f1], w[va]));
     64         va = fa[f1]; f1 = top[va];
     65     }
     66     if (va == vb) return tmp;
     67     if (dep[va] > dep[vb]) swap(va, vb);
     68     return max(tmp, maxi(1, 1, z, w[son[va]], w[vb]));  //
     69 }
     70 
     71 void init(){
     72     scanf("%d", &n);
     73     root = (n + 1) / 2;
     74     fa[root] = z = dep[root] = edge = 0;
     75     memset(siz, 0, sizeof(siz));
     76     memset(first, 0, sizeof(first));
     77     memset(tree, 0, sizeof(tree));
     78     for (int i = 1; i < n; i++){
     79         scanf("%d%d%d", &a, &b, &c);
     80         d[i][0] = a; d[i][1] = b; d[i][2] = c;
     81         insert(a, b, c);
     82         insert(b, a, c);
     83     }
     84     dfs(root);
     85     build_tree(root, root);    //
     86     for (int i = 1; i < n; i++){
     87         if (dep[d[i][0]] > dep[d[i][1]]) swap(d[i][0], d[i][1]);
     88         update(1, 1, z, w[d[i][1]], d[i][2]);
     89     }
     90 }
     91 
     92 inline void read(){
     93     ch[0] = ' ';
     94     while (ch[0] < 'C' || ch[0] > 'Q') scanf("%s", &ch);
     95 }
     96 
     97 void work()
     98 {
     99     for (read(); ch[0] != 'D'; read()){
    100         scanf("%d%d", &a, &b);
    101         if (ch[0] == 'Q') printf("%d
    ", find(a, b));
    102         else update(1, 1, z, w[d[a][1]], b);
    103     }
    104 }
    105 
    106 int main(){
    107     for (scanf("%d", &zzz); zzz > 0; zzz--){
    108         init();
    109         work();
    110     }
    111     return 0;
    112 }

    你让我变得苍白

    却依然天真的相信花儿会再次的盛开

  • 相关阅读:
    20170225-ALV tree 显示
    20170225-第一件事:SAP模块清单
    20170225 ABAP获取字符串长度/字节长度
    记录001:AS11 BAPI
    Ghost wenjian目录
    20170223-问题001,增强中的E消息 显示为 S模式消息,
    孩子教育分析
    笔记:智能分类
    从市电接信号串联电阻聊到电阻的耐压
    锂聚合物电池和液态锂电池
  • 原文地址:https://www.cnblogs.com/ZYBGMZL/p/6906454.html
Copyright © 2011-2022 走看看