zoukankan      html  css  js  c++  java
  • [spoj 375]QTREE

    You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.

    We will ask you to perfrom some instructions of the following form:

    • CHANGE i ti : change the cost of the i-th edge to ti
      or
    • QUERY a b : ask for the maximum edge cost on the path from node a to node b

    Input

    The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.

    For each test case:

    • In the first line there is an integer N (N <= 10000),
    • In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 1000000),
    • The next lines contain instructions "CHANGE i ti" or "QUERY a b",
    • The end of each test case is signified by the string "DONE".

    There is one blank line between successive tests.

    Output

    For each "QUERY" operation, write one integer representing its result.

    Example

    Input:
    1
    
    3
    1 2 1
    2 3 2
    QUERY 1 2
    CHANGE 1 3
    QUERY 1 2
    DONE
    
    Output:
    1
    3

    树链剖分
      1 #include <cstdio>
      2 #include <algorithm>
      3 #include <iostream>
      4 #include <string.h>
      5 using namespace std;
      6 const int maxn = 10010;
      7 struct Tedge
      8 { int b, next; } e[maxn * 2];
      9 int tree[maxn];
     10 int zzz, n, z, edge, root, a, b, c;
     11 int d[maxn][3];
     12 int first[maxn], dep[maxn], w[maxn], fa[maxn], top[maxn], son[maxn], siz[maxn];
     13 char ch[10];
     14 
     15 void insert(int a, int b, int c){
     16     e[++edge].b = b;
     17     e[edge].next = first[a];
     18     first[a] = edge;
     19 }
     20 
     21 void dfs(int v){
     22     siz[v] = 1; son[v] = 0;
     23     for (int i = first[v]; i > 0; i = e[i].next)
     24         if (e[i].b != fa[v]){
     25             fa[e[i].b] = v;
     26             dep[e[i].b] = dep[v]+1;
     27             dfs(e[i].b);
     28             if (siz[e[i].b] > siz[son[v]]) son[v] = e[i].b;
     29             siz[v] += siz[e[i].b];
     30         }
     31 }
     32 
     33 void build_tree(int v, int tp){
     34     w[v] = ++ z; top[v] = tp;
     35     if (son[v] != 0) build_tree(son[v], top[v]);
     36     for (int i = first[v]; i > 0; i = e[i].next)
     37         if (e[i].b != son[v] && e[i].b != fa[v])
     38             build_tree(e[i].b, e[i].b);
     39 }
     40 
     41 void update(int root, int lo, int hi, int loc, int x){
     42     if (loc > hi || lo > loc) return;
     43     if (lo == hi)
     44     { tree[root] = x; return; }
     45     int mid = (lo + hi) / 2, ls = root * 2, rs = ls + 1;
     46     update(ls, lo, mid, loc, x);
     47     update(rs, mid+1, hi, loc, x);
     48     tree[root] = max(tree[ls], tree[rs]);
     49 }
     50 
     51 int maxi(int root, int lo, int hi, int l, int r){
     52     if (l > hi || r < lo) return 0;
     53     if (l <= lo && hi <= r) return tree[root];
     54     int mid = (lo + hi) / 2, ls = root * 2, rs = ls + 1;
     55     return max(maxi(ls, lo, mid, l, r), maxi(rs, mid+1, hi, l, r));
     56 }
     57 
     58 inline int find(int va, int vb){
     59     int f1 = top[va], f2 = top[vb], tmp = 0;
     60     while (f1 != f2){
     61         if (dep[f1] < dep[f2])
     62         { swap(f1, f2); swap(va, vb); }
     63         tmp = max(tmp, maxi(1, 1, z, w[f1], w[va]));
     64         va = fa[f1]; f1 = top[va];
     65     }
     66     if (va == vb) return tmp;
     67     if (dep[va] > dep[vb]) swap(va, vb);
     68     return max(tmp, maxi(1, 1, z, w[son[va]], w[vb]));  //
     69 }
     70 
     71 void init(){
     72     scanf("%d", &n);
     73     root = (n + 1) / 2;
     74     fa[root] = z = dep[root] = edge = 0;
     75     memset(siz, 0, sizeof(siz));
     76     memset(first, 0, sizeof(first));
     77     memset(tree, 0, sizeof(tree));
     78     for (int i = 1; i < n; i++){
     79         scanf("%d%d%d", &a, &b, &c);
     80         d[i][0] = a; d[i][1] = b; d[i][2] = c;
     81         insert(a, b, c);
     82         insert(b, a, c);
     83     }
     84     dfs(root);
     85     build_tree(root, root);    //
     86     for (int i = 1; i < n; i++){
     87         if (dep[d[i][0]] > dep[d[i][1]]) swap(d[i][0], d[i][1]);
     88         update(1, 1, z, w[d[i][1]], d[i][2]);
     89     }
     90 }
     91 
     92 inline void read(){
     93     ch[0] = ' ';
     94     while (ch[0] < 'C' || ch[0] > 'Q') scanf("%s", &ch);
     95 }
     96 
     97 void work()
     98 {
     99     for (read(); ch[0] != 'D'; read()){
    100         scanf("%d%d", &a, &b);
    101         if (ch[0] == 'Q') printf("%d
    ", find(a, b));
    102         else update(1, 1, z, w[d[a][1]], b);
    103     }
    104 }
    105 
    106 int main(){
    107     for (scanf("%d", &zzz); zzz > 0; zzz--){
    108         init();
    109         work();
    110     }
    111     return 0;
    112 }

    你让我变得苍白

    却依然天真的相信花儿会再次的盛开

  • 相关阅读:
    List<T>直接充当Combox控件DataSource并扩展自定义记录的方法
    List转Datatable 新方法
    CDM中,实体与实体快捷方式之间的联系不能重复,否则会造成外键重复
    PD中设置外键约束名称生成规则
    查询当前数据库用户会话信息
    Word中调整编号和文字的间距
    PDM/CDM中进行搜索
    PDM后续处理-驼峰规则、清除约束、外键改名
    列举当前用户或指定用户的所有表,所有字段,以及所有约束
    PDM中列举所有含取值范围、正则表达式约束的字段
  • 原文地址:https://www.cnblogs.com/ZYBGMZL/p/6906454.html
Copyright © 2011-2022 走看看