zoukankan      html  css  js  c++  java
  • BZOJ 4543 2016北京集训测试赛(二)Problem B: thr

    Description

    Solution

    这题的解法很妙啊... 考虑这三个点可能的形态: 令它们的重心为距离到这三个点都相同的节点, 则其中两个点分别在重心的两棵子树中, 且到重心的距离相等; 第三个点可能在重心的一棵不同于前两个点子树上, 也有可能在重心往上走可以到达的位置上.
    定义数组(f[i][j])表示在以(i)为根的子树下与(i)的距离为(j)的节点个数; (g[i][j])表示在以(i)为根的子树下, 有多少个点对满足如下条件: 这个点对到它们LCA的距离相同, 我们假设其为(d), 则(i)到它们的LCA的距离为(d - i), 也就是说, 假如这两个点要找到一个在(i)上方的第三个点组成一组答案, 则第三个点到(i)的距离为(j).
    考虑枚举每个点作为重心的情况. 进行一次DFS, 令(u)为当前点, (v)(u)的一个子节点, 则有:

    [ans += sum_i g[u][i] imes f[v][i - 1] + g[v][i] imes f[u][i - 1] \ g[u][i] += g[v][i + 1] + f[u][i] imes f[v][i - 1] \ f[u][i] += f[v][i - 1] \ ]

    然后我们发现这种方法的转移是(O(n^2))的... 考虑如何优化: 我们注意到, 当一个点(u)计算其第一个子节点时, 可以直接将(f[u][i])赋值为(f[v][i - 1]), (g[u][i])赋值为(g[v][i + 1]), 因此在计算完这个子节点后, 直接对返回的数组指针进行位移就可以得到当前点的(f)(g). 因此考虑采用按深度树链剖分的方法, 从重儿子处继承(f)(g)数组.
    时间复杂度: (O(n)). 为什么? 不会证. 以后学了长链剖分再填坑吧.
    由于数组是动态开的, 同时还存在指针变化的操作, 因此边界可能比较难计算. 假如你比较懒, 就直接将数组大小/对答案贡献的范围调大一些, 这样可以省去不少麻烦.

    #include <cstdio>
    #include <cctype>
    #include <vector>
    #include <algorithm>
    #include <cstring>
     
    namespace Zeonfai
    {
    	inline int getInt()
    	{
    		int a = 0, sgn = 1;
    		char c;
    		while(! isdigit(c = getchar())) if(c == '-') sgn *= -1;
    		while(isdigit(c)) a = a * 10 + c - '0', c = getchar();
    		return a * sgn;
    	}
    }
    const int N = (int)5e4;
    int n;
    struct result
    {
        long long *first, *second;
        inline result() {}
        inline result(long long *_first, long long *_second)
        {
        	first = _first; second = _second;
    	}
    };
    long long ans;
    struct tree
    {
        struct node
        {
            std::vector<node*> edg;
            int maxDepth, dep;
            node *hvy;
            inline void clear()
            {
                edg.clear(); hvy = NULL;
            }
        }nd[N + 1];
        inline void clear()
        {
        	for(int i = 1; i <= n; ++ i) nd[i].clear();
    	}
        inline void addEdge(int u, int v)
        {
            nd[u].edg.push_back(nd + v); nd[v].edg.push_back(nd + u);
        }
        void getDepth(node *u, node *pre)
        {
            u->maxDepth = u->dep = pre == NULL ? 0 : pre->dep + 1;
            for(auto v : u->edg) if(v != pre)
            {
                getDepth(v, u); u->maxDepth = std::max(u->maxDepth, v->maxDepth);
                if(u->hvy == NULL || v->maxDepth > u->hvy->maxDepth) u->hvy = v;
            }
        }
        result decomposition(node *u, node *pre, node *tp)
        {
            result res;
        	long long *f, *g;
            if(u->hvy != NULL) res = decomposition(u->hvy, u, tp), f = res.first - 1, g = res.second + 1;
            else
    		{
    			int len = u->dep - tp->dep + 10; //懒得想边界了, 直接开大一些, 求对答案的时候也求多一些就可以了 
    			f = new long long[len << 1]; memset(f, 0, len << 1 << 3); f += len; 
    			g = new long long[len << 1]; memset(g, 0, len << 1 << 3);
    		}
            f[0] = 1; ans += g[0];
            for(auto v : u->edg) if(v != pre && v != u->hvy)
            {
            	int len = v->maxDepth - v->dep + 1;
            	res = decomposition(v, u, v); long long *_f = res.first, *_g = res.second;
    			for(int i = 1; i <= len; ++ i) ans += g[i] * _f[i - 1] + _g[i] * f[i - 1];
    			for(int i = 1; i <= len; ++ i) g[i] += _f[i - 1] * f[i];
    			for(int i = 0; i <= len; ++ i) g[i] += _g[i + 1];
    			for(int i = 1; i <= len; ++ i) f[i] += _f[i - 1];
    		}
    		return result(f, g);
        }
    }T;
    int main()
    {
    	
    	#ifndef ONLINE_JUDGE
    	
    	freopen("thr.in", "r", stdin);
    	freopen("thr.out", "w", stdout);
    	
    	#endif
    	
        using namespace Zeonfai;
        while(n = getInt())
        {
        	T.clear();
    	    for(int i = 1; i < n; ++ i)
    	    {
    	        int u = getInt(), v = getInt();
    	        T.addEdge(u, v);
    	    }
    	    T.getDepth(T.nd + 1, NULL);
    	    ans = 0;
    	    T.decomposition(T.nd + 1, NULL, T.nd + 1);
    	    printf("%lld
    ", ans);
    	}
    }
    
    
  • 相关阅读:
    codevs1080线段树练习
    NOIP2015 子串
    codevs1204 寻找子串位置
    字符串匹配的KMP算法
    TYVJ1460 旅行
    基础
    搜索
    二叉排序树
    二叉树
    poj
  • 原文地址:https://www.cnblogs.com/ZeonfaiHo/p/7351880.html
Copyright © 2011-2022 走看看