zoukankan      html  css  js  c++  java
  • 「CSP模拟」模拟测试5

    平均数

    题意是让求平均值第K小的连续子区间。
    发现直接计算无论怎么优化都是 (n^2) 的,然后发现这样找K个的似乎可以考虑二分答案。
    简单推一下式子。
    (sum[i]) 为前缀和,显然符合条件的区间有:

    [frac{sum[j] - sum[i]}{j-i} leq mid ]

    [sum[j] - j imes mid leq sum[i] - i imes mid ]

    默认 (j < i),区间为 ([i+1,j]),所以显然下标从0开始。

    所以问题转化为一个类似01分数规划的东西,check的话用树状数组求逆序对,注意处理下标为0。

    代码写得有点长,而且没有卡常所以有点慢。

    #include <cstdio>
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    using namespace std;
    const int maxn = 1e5 + 10;
    const double eps = 1e-8;
    double sum[maxn];
    int w[maxn];
    long long n, k;
    void Add(int i, int val) {
        for (; i <= 100001; i += (i & (-i))) w[i] += val;
    }
    int Ask(int i) {
        int ans = 0;
        for (; i; i -= i & (-i)) ans += w[i];
        return ans;
    }
    struct node {
        double data;
        int pos;
    }tmp[maxn];
    bool cmp(node x, node y) { return x.data < y.data; }
    bool Check(double mid) {
        long long cnt = 0;
        tmp[0] = (node) { 0, 0 };
        for (int i = 1; i <= n; i++)
    	tmp[i] = (node) { sum[i] - mid * i, i};
        sort(tmp, tmp + 1 + n, cmp);
        for (int i = n; i >= 0; i--) {
    	cnt += Ask(tmp[i].pos + 1);
    	Add(tmp[i].pos + 1, 1);
        }
        for (int i = 0; i <= n; i++) Add(i + 1, -1);
        return cnt >= k;
    }
    int main() {
        freopen("ave.in", "r", stdin);
        freopen("ave.out", "w", stdout);
        scanf("%lld %lld", &n, &k);
        for (int i = 1; i <= n; i++) {
    	scanf("%lf", &sum[i]);
    	sum[i] += sum[i - 1];
        }
        double l = 1.0, r = 1000000000.0, mid;
        while (r - l > eps) {
    	mid = (l + r) / 2;
    	//cout<<mid<<endl;
    	if (Check(mid)) r = mid;
    	else l = mid;
        }
        printf("%.4lf
    ", l);
        return 0;
    }
    

    涂色游戏

    并不是很会推这个式子...c一波学长题解吧...

    (f[i][j]) 代表第(i)列选(j)个颜色的方案数,

    (g[i][j])代表用任意(i)个颜色填(j)个块的方案数,

    (h[i][j])代表上一列选(i)个颜色这一列选(j)个的方案数

    (g[i][j]=g[i-1][j-1] imes (p-i+1)+g[i][j-1] imes i),就是第二类斯特林数;

    (h[j][k]=frac{g[k][n]}{C_{p}^{k}} imes sum_{x=max(q,j,k)}^{min(p, j+k)}C_{j}^{j+k-x}C_{p-j}^{x-j})

    (f[i][j]=f[i-1][k] imes h[k][j])

    发现(f)的转移跟(i)无关,再加上(m)如此巨大,可以矩阵乘。

    其实并不用真正写一个矩阵快速幂,但我还是无脑套了板子...

    另外,注意卡常。

    #include <cstdio>
    #include <iostream>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    const int maxn = 105;
    const int mo = 998244353;
    int n, m, p, q;
    long long g[maxn][maxn], h[maxn][maxn], c[maxn][maxn];
    struct Mat {
        long long w[maxn][maxn];
        Mat() {
    	memset(w, 0, sizeof w);
        }
        void init() {
    	for (int i = 1; i <= n; i++) {
    	    for (int j = 1; j <= n; j++) {
    		w[i][j] = (i == j ? 1 : 0);
    	    }
    	}
        }
        Mat operator * (const Mat &b) const {
    	Mat c;
    	for (int i = 1; i <= n; i++) {
    	    for (int j = 1; j <= n; j++) {
    		for (int k = 1; k <= n; k++) {
    		    c.w[i][j] += w[i][k] * b.w[k][j] % mo;
    		}
    		c.w[i][j] %= mo;
    	    }
    	}
    	return c;
        }
    };
    long long Qpow(long long x, int t) {
        long long s = 1;
        while (t) {
    	if (t & 1) s = s * x % mo;
    	x = x * x % mo;
    	t >>= 1;
        }
        return s;
    }
    Mat Matpow(Mat x, int t) {
        Mat s;
        s.init();
        while (t) {
    	if (t & 1) s = s * x;
    	x = x * x;
    	t >>= 1;
        }
        return s;
    }
    int main() {
        //freopen("color.in", "r", stdin);
        //freopen("color.out", "w", stdout);
        cin >> n >> m >> p >> q;
        for (int i = 0; i <= p; i++) 
    	c[i][0] = 1;
        for (int i = 1; i <= p; i++)
    	for (int j = 1; j <= i; j++)
    	    c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % mo;
        g[0][0] = 1, g[1][1] = 1, g[2][1] = 1;
        for (int i = 1; i <= p; i++) {
    	for (int j = 1; j <= n; j++) {
    	    g[i][j] = (g[i - 1][j - 1] * (p - i + 1) % mo + g[i][j - 1] * i % mo) % mo;
    	}
        }
        for (register int j = 1; j <= n; j++) {
    	for (register int k = 1; k <= n; k++) {
    	    long long sum = 0;
    	    for (int x = max(q, max(j, k)); x <= min(p, j + k); x++)
    		sum = (sum + c[j][j + k - x] * c[p - j][x - j] % mo) % mo;
    	    h[j][k] = g[k][n] * Qpow(c[p][k], mo - 2) % mo * sum % mo;
    	}
        }
        Mat base, ans;
        for (int i = 1; i <= n; i++) 
    	for (int j = 1; j <= n; j++)
    	    base.w[i][j] = h[i][j];
        for (int i = 1; i <= min(p, n); i++) {
    	ans.w[1][i] = g[i][n];
        }
        base = Matpow(base, m - 1);
        ans = ans * base;
        long long sum = 0;
        for (int i = 1; i <= min(n, p); i++)
    	sum = (sum + ans.w[1][i]) % mo;
        cout << sum << endl;
        return 0;
    }
    

    序列

    考场上打了1h+的主席树挂了...

    用线段树套vector水过。

    每个节点开一个vector,存下能够完全覆盖此节点代表区间的询问的x值。(注意保证vector有序)

    然后考虑每个a[i]的贡献,从根一直到区间为i的叶子节点,每到一个节点就在该节点的vector里二分一下,由于一个询问最多只会更新一个节点一次,所以贡献不会算重。

    ans[i]记录a[i]的贡献。

    修改的话直接计算更新即可。

    #include <cstdio>
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <vector>
    using namespace std;
    const int maxn = 1e5 + 10;
    inline int read() {
        int s = 0, w = 1;
        char c = getchar();
        while (c < '0' || c > '9') { if (c == '-') w = -1; c = getchar(); }
        while (c >= '0' && c <= '9') s = s * 10 + c - '0', c = getchar();
        return s * w;
    }
    struct tree {
        vector<int> qe;
    }t[maxn << 2];
    #define ls (u << 1)
    #define rs (u << 1 | 1)
    void Update(int u, int l, int r, int ql, int qr, int val) {
        if (ql <= l && r <= qr) {
    	t[u].qe.push_back(val);
    	return;
        }
        int mid = (l + r) >> 1;
        if (ql <= mid) Update(ls, l, mid, ql, qr, val);
        if (qr > mid) Update(rs, mid + 1, r, ql, qr, val);
        return;
    }
    int Get(int u, int val) {
        int ans, flag = 1;
        /*for (int i = 0; i < t[u].qe.size(); i++) {
    	if (t[u].qe[i] > val) {
    	    flag = 0;
    	    ans = i;
    	    break;
    	}
        }
        if (flag) ans = t[u].qe.size();*/
        int l = 0, r = t[u].qe.size() - 1, mid;
        while (l <= r) {
    	mid = (l + r) >> 1;
    	if (t[u].qe[mid] > val) r = mid - 1;
    	else l = mid + 1;
        }
        //cout << "************" << endl;
        //printf("ans = %d l = %d
    ", ans, l);
        //cout << "************" << endl;
        return l;
    }
    int Ask(int u, int l, int r, int pos, int val) {
        if (l == r) {
    	return Get(u, val);
        }
        int mid = (l + r) >> 1;
        int ans = 0;
        ans += Get(u, val);
        if (pos <= mid) ans += Ask(ls, l, mid, pos, val);
        else ans += Ask(rs, mid + 1, r, pos, val);
        return ans;
    }
    int n, m, q;
    int a[maxn];
    int aa[maxn];
    struct node {
        int l, r, x;
    }qq[maxn];
    bool cmp(node aa, node bb) { return aa.x < bb.x; }
    int main() {
        freopen("seq.in", "r", stdin);
        freopen("seq.out", "w", stdout);
        n = read(), m = read(), q = read();
        for (int i = 1; i <= n; i++) a[i] = read();
        for (int i = 1; i <= m; i++) {
    	qq[i].l = read(), qq[i].r = read(), qq[i].x = read();
        }
        sort(qq + 1, qq + 1 + m, cmp);
        for (int i = 1; i <= m; i++) {
    	Update(1, 1, n, qq[i].l, qq[i].r, qq[i].x);
        }
        int ans = 0;
        for (int i = 1; i <= n; i++) {
    	aa[i] = Ask(1, 1, n, i, a[i]);
    	ans += aa[i];
        }
        printf("%d
    ", ans);
        //for (int i = 1; i <= n; i++)
    	//cout << aa[i] << endl;
        int u, v, pos, val;
        while (q--) {
    	u = read(), v = read();
    	pos = u ^ ans;
    	val = v ^ ans;
    	ans -= aa[pos];
    	aa[pos] = Ask(1, 1, n, pos, val);
    	ans += aa[pos];
    	printf("%d
    ", ans);
        }
    }
    
  • 相关阅读:
    [转] Spring的session管理
    C# 屏幕截图
    C#数字图像处理图像旋转图片加角度
    C#委托
    C# HttpWebRequest 添加Cookie验证
    网站
    前端获取URL中的值
    从下往上画的文字
    测试SSL的网站
    Tomcat-绑定证书的两种方法
  • 原文地址:https://www.cnblogs.com/Zfio/p/13720596.html
Copyright © 2011-2022 走看看