zoukankan      html  css  js  c++  java
  • [LeetCode] 72. Edit Distance(最短编辑距离)

    传送门

    Description

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

    You have the following 3 operations permitted on a word:

    a) Insert a character
    b) Delete a character
    c) Replace a character

    思路

    题意:给定字符串1和字符串2,通过增加,删除,替换字母操作,至少需要几步能将字符串1变到字符串2

    题解:自然语言处理(NLP)中,有一个基本问题就是求两个字符串的minimal Edit Distance, 也称Levenshtein distance。仅通过插入(insert)、删除(delete)和替换(substitute)个操作将一个字符串s1变换到另一个字符串s2的最少步骤数。其实一个替换操作可以相当于一个delete+一个insert,所以我们将权值定义如下:  I  (insert):1  D (delete):1  S (substitute):2 。在本题中,替换操作当作一步算,因此权值也是1。

    设状态为 dp[ i ] [ j] ,表示 A[ 0 , i ] 和 B[ 0 , j ] 之间的最小编辑距离,字符串 A 的前 i 个字母变换成字符串 B 的前 j 个字母需要步数为 dp[ i ][ j ]。设 A[ 0 , i ] 的形式是 str1c,B[ 0 , j ] 的形式是 str2d ,

    • 1. 如果 c == d ,则 dp[ i ] [ j]=dp[ i - 1 ][ j - 1 ] ;
    • 2. 如果 c != d ,
    • i. 如果将 c 替换成 d,则 dp[ i ][ j ] = dp[ i - 1 ][ j - 1 ] + 1;
    • ii. 如果在c后面添加一个d,则 dp[ i ][ j ] = dp[ i ][ j - 1 ] + 1;  //相当于字符串1的前 i 个字母变换成字符串2的前 j - 1 个字母需要的最少步数下加一个操作,添加 d
    • iii. 如果将c删除,则 dp[ i ][ j ] = dp[ i - 1 ][ j ] + 1 ;                 //相当于字符串1的前 i - 1 个字母变换成字符串2的前 j 个字母需要的最少步数下加一个操作,删除 c
    class Solution {
    public:
        int minDistance(string word1, string word2) {
            int m = word1.size(),n = word2.size();
            vector<vector<int>>dp(m + 1,vector<int>(n + 1,0));
            for (int i = 0;i <= n;i++)   dp[0][i] = i;
            for (int i = 0;i <= m;i++)   dp[i][0] = i;
            for (int i = 1;i <= m;i++){
                for (int j = 1;j <= n;j++){
                    if (word1[i - 1] == word2[j - 1])   dp[i][j] = dp[i - 1][j - 1];
                    else    dp[i][j] = min(dp[i - 1][j - 1],min(dp[i][j - 1],dp[i - 1][j])) + 1;
                }
            }
            return dp[m][n];
        }
    };
    

      

  • 相关阅读:
    如果因特网中的所有链路都提供可靠的交付服务,TCP可靠传输服务是多余的吗?
    编译运行java程序出现Exception in thread "main" java.lang.UnsupportedClassVersionError: M : Unsupported major.minor version 51.0
    chrome浏览器插件的开启快捷键
    sqlzoo练习题答案
    2019Falg
    python绘图踩的坑
    精益数据分析--测试分析
    np.random的随机数函数
    numpy中文件的存储和读取-嵩天老师笔记
    喜欢的话
  • 原文地址:https://www.cnblogs.com/ZhaoxiCheung/p/7420027.html
Copyright © 2011-2022 走看看