zoukankan      html  css  js  c++  java
  • 【题解】P4735 最大异或和(可持久化trie)

    P4735 最大异或和(可持久化trie)

    题目描述

    给定一个非负整数序列 ({a}),初始长度为 n。

    有 m 个操作,有以下两种操作类型:

    A x:添加操作,表示在序列末尾添加一个数 x,序列的长度 (n + 1)

    Q l r x:询问操作,你需要找到一个位置 p,满足(l le p le r),使得: (a[p] oplus a[p+1] oplus ... oplus a[N] oplus x) 最大,输出最大是多少。

    思路

    异或满足可加性,所以对 ({a}) 求前缀和 ({s}), (a[p] oplus a[p + 1] oplus a[p + 2] ... oplus a[n] oplus x = s[p - 1] oplus s[n] oplus x)。问题转化为已知数 (s[n] oplus x)({s}) 中的一个数满足在给定区间并且和 (s[n] oplus x) 异或起来最大。

    首先,不考虑区间限制,单纯找一个数和已知数异或和最大的话,可以对 ({s}) 构建 trie 树。从最高位按位遍历已知数字,如果 trie 树上当前结点存在和这一位相反的数,就去相反的儿子,实在不行再去相同的儿子。这样贪心找出来的数和已知数字的异或和最大。

    至于区间限制,导致 trie 树上的一些在 l - 1 之前加入的结点不能用, 在 r 及之后加入的结点不能用(注意这里l-1能选因为异或s[l-1]是保留到l;r不能选是因为异或s[r]连r也删了)。对于 r 的限制,我们可以可持久化,也就是记录所有时间内 tire 树的状态,也就是一共有 n 棵 trie, 我们在第 r - 1 棵trie上进行贪心的按位选择。对于 l 的限制,我们可以记录 trie 树上每一个结点的最晚时间戳 lst[] ,最晚时间戳要小于 l - 1 的结点也不能用。

    可持久化就是在建第 i 棵树的时候尽可能多的去嫖一些第 i - 1 棵树的结点,所以建树的参数要传两棵树的。根节点肯定不能嫖,新添加的数字 s[i] 所产生的结点也要用新的不能嫖。所谓能嫖的结点,就是沿用不符合当前数位的无关紧要的点。这些点虽然在现在用不到,但是在往后的时间里构建 trie 还是要在此基础上加工的。

    插入和查询操作

    //位数=log(1e7)(2)=23
    int maxn = 300000;
    int lst[maxn * 24], trie[maxn * 24], cnt, root[maxn];
    void insert(int timepost, int val, int k, int p, int q){
    	if(k < 0){
    		lst[p] = timepost;
    		return;
    	}
    	int c = val >> k & 1;
    	if(q){
    		trie[p][c ^ 1] = trie[q][c ^ 1];
    	}
    	trie[p][c] = ++cnt;
    	insert(timepost, val, k - 1, trie[p][c], trie[q][c]);
    	lst[p] = max(lst[trie[p][0]], lst[trie[p][1]]);
    }
    
    int query(int timepost, int val, int k, int nownode){
    	if(k < 0){
    		return s[lst[nownode]] ^ val;
    	}
    	int c = val >> k & 1;
    	if(lst[nownode][c] >= timepost){
    		return query(timepost, val, k - 1, trie[nownode][c ^ 1]);
    	}
    	else return query(timepost, val, k  -1, tire[nownode][c]);
    }
    

    重要的事情

    • 有关数组大小
      理论上来说,假设所有(n+m)棵trie都开满(2*{maxlen})个点,总的数组大小开trie[(maxn + maxm) * 2]也就是2倍常数是保险的。这个题的话开到 500000 即可AC,但是无法确定所用点数最多的那个数据的 (n + m) 是几,目前不知道关于tire树棵树的常数应该开到几。目前还是能开2倍就多开一点。

    • 有关第0棵trie
      第0棵trie是存在的,如果我们最后的答案是(a[1]oplus a[2]oplus ... oplus[n])的话,就需要进行(oplus s[0])操作,这意味着创造出(a[0] = s[0] = 0)是必须的。

    • 有关lst
      注意lst为0值时是指第0棵trie,无定义结点的lst应该赋值为-1。

    • 有关l-1r-1
      这个在上面都说过了,注意一下。

    • 有关UB
      Undefined Behavoir
      比如这一句容易挂的语句s[++n]=s[n-1]^x就很有问题。事实上,等号的优先级是最低的,这意味着等式的右边总是先于左边计算从而应该改成s[n]=s[(++n)-1]^x

    后续

    可持久化01tire是上古时期学的,昨天准备要写,今天学会并且写了,花了一下午和半个晚上的时间去过板子题。期间我发帖求助,炸出了一群巨神来帮我,好感动,又找到了曾经的感觉了,生活又美好了起来,又想码字了。

    AC代码

    #include<set>
    #include<map>
    #include<queue>
    #include<cmath>
    #include<ctime>
    #include<stack>
    #include<vector>
    #include<cstdio>
    #include<string>
    #include<cstring>
    #include<cstdlib>
    #include<iomanip>
    #include<iostream>
    #include<algorithm>
    #include<functional>
    #define inf 0x3fffffff
    #define ls p * 2
    #define rs p * 2 + 1
    #define fi first
    #define se second
    #define pb push_back
    #define mp make_pair
    using namespace std;
    
    typedef long long ll;
    typedef pair<int,int> pi;
    typedef vector<int> vi;
    typedef unsigned int ui;
    
    int rd(){
    	int res = 0, fl = 1;
    	char c = getchar();
    	while(!isdigit(c)){
    		if(c == '-') fl = -1;
    		c = getchar();
    	}
    	while(isdigit(c)){
    		res = (res << 3) + (res << 1) + c - '0';
    		c = getchar();
    	}
    	return res * fl;
    }
    
    const int maxn = 500000;
    int trie[maxn * 25][2], root[maxn], cnt, lst[maxn * 25];
    string op;
    int n, m, l, r;
    int  s[maxn], x, ans;
    void insert(int timepost, int val, int k, int nownode, int lstnode){
        if(k < 0){
            lst[nownode] = timepost;
            return;
        }
        int c = (val >> k) & 1;
        trie[nownode][c] = ++cnt;
        if(trie[lstnode][c ^ 1]){
            trie[nownode][c ^ 1] = trie[lstnode][c ^ 1];
        } 
        insert(timepost, val, k - 1, trie[nownode][c], trie[lstnode][c]);
        lst[nownode] = max(lst[trie[nownode][0]], lst[trie[nownode][1]]);
        return;
    }
    
    int query(int timepost, int val, int k, int nownode){
        if(k < 0){
            return s[lst[nownode]];
        }
        int c = val >> k & 1;
        if(lst[trie[nownode][c ^ 1]] >= timepost){
            return query(timepost, val, k - 1, trie[nownode][c ^ 1]);
        }
        else return query(timepost, val, k - 1, trie[nownode][c]);
    }
    
    int main(){
        memset(lst, -1, sizeof(lst));
        n = rd(); m = rd();
        root[0] = ++cnt;
        insert(0, 0, 24, root[0], root[0]);
        for(int i = 1; i <= n; ++i){
            x = rd();
            s[i] = s[i - 1] ^ x;
            root[i] = ++cnt;
            insert(i, s[i], 24, root[i], root[i - 1]);
        }
        for(int i = 1; i <= m; ++i){
            cin >> op;
            if(op[0] == 'A'){
                x = rd();
                s[n] = s[(++n)-1] ^ x;
                root[n] = ++cnt;
                insert(n, s[n], 24, root[n], root[n - 1]);
            }
            else if(op[0] == 'Q'){
                l = rd(); r = rd(); x = rd();
                ans = s[n];
                ans = ans ^ query(l - 1, x ^ s[n], 24, root[r - 1]);
                ans = ans ^ x;
                printf("%d
    ", ans);
            }
        }
        return 0;
    }
    
  • 相关阅读:
    MVC三层架构
    Cookie
    request (请求转发)
    response 重定向
    HttpServletResponse(响应),实现文件下载,实现验证码功能
    HTTP报文格式
    基于UUID生成短ID
    一致性hash应用到redis
    spring-mysqlclient开源了
    Effection Go
  • 原文地址:https://www.cnblogs.com/ZhengkunJia/p/14988367.html
Copyright © 2011-2022 走看看