A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
有个图来着,Markdown贴起来很麻烦.不贴了.
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: (m) and (n) will be at most 100.
解题思路,没啥可说, 用 dynamic programming.
步骤:
step 1: 看 https://mp.weixin.qq.com/s/0AgJmQNYAKzVOyigXiKQhA, 动态规划入门最好材料,没有之一! 10分钟看完,然后第二步.
step 2: 画图自己做这个题.^^
主要是先建模型,既,分析出:
- 状态转移公式,本题有3个状态转移公式,分别对应这i,j条件.具体参考最下方的代码(简单递归,当然无法执行,因为时间复杂度为 (O(2^n)), 但能很好的展示了转移公式);
- 最优子结构(分别对应各自的状态转移公式);
- 边界,既
F[0,0] = 1
.
自己想法,自个代码^^:
(O(m*n)) time, (O(n)) extra space.
class Solution {
public:
// 真正的DP求解
// $O(m*n)$ time, $O(n)$ extra space.
// 时间复杂度无法再小了,但空间复杂度还可以再小.
// space complexity 最低可为 min(m, n);
// 听说有 $O(1)$ 的空间复杂度?
// 如果不用 DP, 可用 math 的方法,如下:
// https://leetcode.com/problems/unique-paths/discuss/
int uniquePaths(int m, int n) {
if(m == 1 || n == 1) return 1;
if(m < n) return uniquePaths(n, m);
vector<int> temp(n - 1, 0);
for(int i = 1; i < m; i++){
for(int j = 1; j < n; j++){
if(i == 1 && j == 1) temp[0] = 2;
else if(i == 1 && j > 1) temp[j - 1] = 1 + temp[j - 2];
else if(i > 1 && j == 1) temp[0] = temp[0] + 1;
else if(i > 1 && j > 1) temp[j - 1] = temp[j - 1] + temp[j - 2];
}
}
return temp[n - 2];
}
};
下面是简单递归,但 time complexity (O(2^n)), 太高了.
下面代码可清晰地展示出DP的三要素:
状态转移公式、最优子结构和边界.
class Solution {
public:
// 方法一: 简单递归,但 time complexity $O(2^n)$, 太高了.
int uniquePaths(int m, int n) {
int i = m - 1, j = n - 1;
if(i == 0 && j == 0) return 1;
else if(i == 0 && j != 0) return uniquePaths(i, j - 1);
else if(j == 0 && i != 0) return uniquePaths(i - 1, j);
else if(j > 0 && i > 0) return uniquePaths(i, j - 1) + uniquePaths(i - 1, j);
}
};