Given an m x n grid filled with nonnegative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
动态规划问题.
- 状态转移公式:
F[i,j] = min(F[i,j-1], F[i-1,j]) + A[i,j]
- 最优子结构:
F[i,j-1], F[i-1,j] 和 A[i,j]
- 边界:
F[0,0] = A[0,0];
参照例子:
1 2 3 4
4 3 2 1
2 1 2 3
实现中有三种选择:
- 最优的: (O(m*n)) time, (O(min(m, n))) extra space;(maintain an array)
- 次优的: (O(m*n)) time, (O(m)+O(n)) extra space;(维护俩数组,长度分别m, n)
- 最差的: (O(m*n)) time, (O(m*n)) extra space.(maintain a matrix, m*n)
自个想法,自个最优空间复杂度代码:
(O(m*n)) time, (O(min(m, n))) extra space;
// method 2
// DP
// F[i,j] = min(F[i,j-1], F[i-1,j] + A[i,j])
// O(m*n) time, O(min(m,n)) extra space
int minPathSum(vector<vector<int>>& A) {
const int m = A.size(), n = A[0].size();
if (m == 0) return 0;
if (m == 1 && n == 1) return A[0][0];
vector<int> dp(n);
// load the 0st row of A into dp
dp[0] = A[0][0];
for (int j = 1; j < n; j++)
dp[j] = A[0][j] + dp[j - 1];
// fill none first row and col in dp by state transfer equation
for (int i = 1; i < m; i++) {
for (int j = 0; j < n; j++) {
if (j == 0) dp[j] = dp[j] + A[i][0];
else dp[j] = min(dp[j - 1], dp[j]) + A[i][j];
}
}
return dp[n - 1];
}
自个想法,自个差空间复杂度代码:
(O(m*n)) time, (O(m*n)) extra space;
// method 1
// DP
// F[i,j] = min(F[i,j-1], F[i-1,j]) + A[i,j]
// O(m*n) time, O(m*n) extra space
// not good
int minPathSum(vector<vector<int>>& A) {
const int m = A.size(), n = A[0].size();
if (m == 0) return 0;
if (m == 1 && n == 1) return A[0][0];
// initialize dp(m*n) matrix
vector < vector<int> > dp(m);
for (int i = 0; i < m; i++)
dp[i].resize(n);
// fill first row in dp
dp[0][0] = A[0][0];
for (int j = 1; j < n; j++)
dp[0][j] = A[0][j] + dp[0][j - 1];
// fill first col in dp
for (int i = 1; i < m; i++)
dp[i][0] = A[i][0] + dp[i - 1][0];
// fill none first row and col in dp by state transfer equation
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + A[i][j];
}
}
return dp[m - 1][n - 1];
}