1.从中序与后序遍历序列构造二叉树
题目链接:https://leetcode-cn.com/problems/construct-binary-tree-from-inorder-and-postorder-traversal/
题目描述:
题解:
第一步:如果数组大小为零的话,说明是空节点了。
第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。
第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点
第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)
第五步:切割后序数组,切成后序左数组和后序右数组
第六步:递归处理左区间和右区间
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* travel(vector<int>& inorder, vector<int>& postorder)
{
if(postorder.size() == 0) return nullptr;
int val = postorder[postorder.size() - 1]; //二叉树的根
TreeNode* root = new TreeNode(val);//创建一个新节点
int index;
for(index = 0; index < inorder.size(); index++) //在中序数组中找到后续节点的分割位置
{
if(inorder[index] == val) break;
}
//切割中序数组,中序左数组[0, index)
vector<int> leftInorder(inorder.begin(), inorder.begin() + index);
//切割中序数组,中序右数组[index + 1, end)
vector<int> rightInorder(inorder.begin() + index + 1, inorder.end());
postorder.resize(postorder.size() - 1);//去除后序数组的最后一个元素
//切割后序数组,后序左数组于中序左数组大小一致
vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());
//递归处理左右子树
root->left = travel(leftInorder, leftPostorder);
root->right = travel(rightInorder, rightPostorder);
return root;
}
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
if(inorder.size() == 0 || postorder.size() == 0)
return nullptr;
return travel(inorder, postorder);
}
};
2.从前序与中序遍历序列构造二叉树
题目链接:https://leetcode-cn.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/
题目描述:
题解:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* travel(vector<int>& preorder, int preBegin, int preEnd, vector<int>& inorder, int inBegin, int inEnd)
{
if(preBegin == preEnd) return NULL;
int val = preorder[preBegin];
TreeNode* root = new TreeNode(val);
if (preEnd - preBegin == 1) return root;
int index;//查找切割点
for(index = inBegin; index < inEnd; index++)
{
if(inorder[index] == val) break;
}
//切割中序序列
int leftInorderBegin = inBegin;
int leftInorderEnd = index;
int rightInorderBegin = index + 1;
int rightInorderEnd = inEnd;
//切割前序序列
int leftPreorderBegin = preBegin + 1;
int leftPreorderEnd = preBegin + 1 + leftInorderEnd - leftInorderBegin;
int rightPreorderBegin = leftPreorderEnd;
int rightPreorderEnd = preEnd;
//递归左、右子树
root->left = travel(preorder, leftPreorderBegin, leftPreorderEnd, inorder, leftInorderBegin, leftInorderEnd);
root->right = travel(preorder, rightPreorderBegin, rightPreorderEnd, inorder, rightInorderBegin, rightInorderEnd);
return root;
}
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
if(preorder.size() == 0 || inorder.size() == 0)
return nullptr;
return travel(preorder, 0, preorder.size(), inorder, 0, inorder.size());
}
};