zoukankan      html  css  js  c++  java
  • poj-3255-Roadblocks-路径可重复次短路

    题目:

    Roadblocks
    Time Limit: 2000MS        Memory Limit: 65536K
    Total Submissions: 7075        Accepted: 2629
    Description
    
    Bessie has moved to a small farm and sometimes enjoys returning to visit one of her best friends. She does not want to get to her old home too quickly, because she likes the scenery along the way. She has decided to take the second-shortest rather than the shortest path. She knows there must be some second-shortest path.
    
    The countryside consists of R (1 ≤ R ≤ 100,000) bidirectional roads, each linking two of the N (1 ≤ N ≤ 5000) intersections, conveniently numbered 1..N. Bessie starts at intersection 1, and her friend (the destination) is at intersection N.
    
    The second-shortest path may share roads with any of the shortest paths, and it may backtrack i.e., use the same road or intersection more than once. The second-shortest path is the shortest path whose length is longer than the shortest path(s) (i.e., if two or more shortest paths exist, the second-shortest path is the one whose length is longer than those but no longer than any other path).
    
    Input
    
    Line 1: Two space-separated integers: N and R 
    Lines 2..R+1: Each line contains three space-separated integers: A, B, and D that describe a road that connects intersections A and B and has length D (1 ≤ D ≤ 5000)
    Output
    
    Line 1: The length of the second shortest path between node 1 and node N
    Sample Input
    
    4 4
    1 2 100
    2 4 200
    2 3 250
    3 4 100
    Sample Output
    
    450
    Hint
    
    Two routes: 1 -> 2 -> 4 (length 100+200=300) and 1 -> 2 -> 3 -> 4 (length 100+250+100=450)
    题目

    题意:无向图。 起点为1, 终点为 n, 输出仅次于 最短路的次短路, 路径可重复走。

    思路:正反求两遍最短路,得出1 到所有点的最短距离, 和 n到所有点的最短距离。因为路径可以重复走,所以两点之间只有一条边的可以重复经过。接着将每条边视作单项边,枚举每条单项边e(u, v),Dist = dist(1, u) + dist(n, v) + dist(u,v).这样只会重复一条最小边。所求得的 大于 dist(1, n)的最小的Dist,就是题目的解。(理解不了的画一下图就明白了)

    AC代码:

      1 #include<cstdio>
      2 #include<iostream>
      3 #include<queue>
      4 #include<vector>
      5 #include<algorithm>
      6 #include<cstring>
      7 #include<climits>
      8 using namespace std;
      9 #define maxn 100009
     10 #define INF INT_MAX-100000
     11 struct Edge
     12 {
     13    int from, to, dist;
     14 };
     15 
     16 struct Heapnode
     17 {
     18    int d, u;
     19    bool operator < (const Heapnode& that) const {
     20       return d > that.d;
     21    }
     22 };
     23 
     24 int dist1[maxn], dist2[maxn];
     25 struct Dijkstra
     26 {
     27    int n, m;
     28    vector<Edge> edges;
     29    vector<int> G[maxn];
     30    bool done[maxn];
     31    int d[maxn];
     32    int p[maxn];
     33 
     34    void init(int n) {
     35       this->n = n;
     36       for(int i = 0; i < n; i++) G[i].clear();
     37       edges.clear();
     38    }
     39 
     40    void AddEdge(int from, int to , int dist) {
     41       edges.push_back((Edge) {from, to , dist});
     42       m = edges.size();
     43       G[from].push_back(m-1);
     44    }
     45 
     46    void dijkstra(int s, int* dx) {
     47       priority_queue<Heapnode> Q;
     48       for(int i = 0; i < n; i++) dx[i] = d[i] = INF;
     49       d[s] = dx[s] = 0;
     50       memset(done, 0, sizeof(done));
     51       Q.push((Heapnode) {0, s});
     52       while(!Q.empty()) {
     53          Heapnode x = Q.top(); Q.pop();
     54          int u = x.u;
     55          if(done[u]) continue;
     56          done[u] = true;
     57          int size = G[u].size();
     58          for(int i = 0; i < size; i++) {
     59             Edge& e = edges[G[u][i]];
     60             if(d[e.to] > d[u] + e.dist) {
     61                dx[e.to] = d[e.to] = d[u] + e.dist;
     62                p[e.to] = G[u][i];
     63                Q.push ((Heapnode) {d[e.to], e.to});
     64             }
     65          }
     66       }
     67    }
     68 }dij;
     69 
     70 void work(int n, int r)
     71 {
     72    dij.init(n+1);
     73    for(int i = 0; i < r; i++){
     74       int a, b, c; scanf("%d%d%d", &a, &b, &c);
     75       dij.AddEdge(a, b, c);
     76       dij.AddEdge(b, a, c);
     77    }
     78    dij.dijkstra(1, dist1);
     79    dij.dijkstra(n, dist2);
     80    int Dist, sta = dist1[n], res = INF;
     81    for(int i = 1; i <= n; i++){
     82       int ss = dij.G[i].size();
     83       for(int j = 0; j < ss; j++){
     84          int m = dij.G[i][j];
     85          Edge ee = dij.edges[m];
     86          Dist = dist1[ee.from] + dist2[ee.to] + ee.dist;
     87          if(Dist < res && Dist > dist1[n]) res = Dist;
     88          //cout<<Dist<<" "<<res<<endl;
     89       }
     90    }
     91    printf("%d
    ", res);
     92 }
     93 int main()
     94 {
     95    int n, r;
     96    while(scanf("%d%d", &n, &r) != EOF){
     97       work(n, r);
     98    }
     99    return 0;
    100 }
    View Code
  • 相关阅读:
    easyui datagrid 悬浮事件
    wpf 遍历控件及其值
    wpf 异常处理和关闭进程
    c# 反射类字段
    wpf 获取datagrid中模板中控件
    JavaScript中ActiveXObject对象
    动画执行完后再次执行
    鼠标滚轮事件(mousewheel 与 DOMMouseScroll)
    移动端的小问题整理
    flex布局兼容问题
  • 原文地址:https://www.cnblogs.com/ZiningTang/p/3862803.html
Copyright © 2011-2022 走看看