zoukankan      html  css  js  c++  java
  • LOJ 6089 小Y的背包计数问题 —— 前缀和优化DP

    题目:https://loj.ac/problem/6089

    对于 i <= √n ,设 f[i][j] 表示前 i 种,体积为 j 的方案数,那么 f[i][j] = ∑(1 <= k <= i ) f[i-1][j - k*i]

    可以用前缀和优化,因为第 i 次只会用到间隔为 i 的和;

    对于 i > √n ,最多选 √n 个,所以设 g[i][j] 表示用 i 个,体积为 j 的方案数;

    每种方案如果排一个序,就是一个最小值为 √n + 1 的不降序列,所以算出不降序列的个数也就知道了方案数;

    要得到一个长度为 i 的这样的序列,可以通过两种操作从 i - 1 的序列得到,即新加一个 √n + 1,或整体 + 1;

    二者合并起来就是答案;

    调了一下午,就是因为 f[] 数组开成 √n 大小了?为什么没有段错误提示??

    会写前缀和优化DP啦...

    代码如下:

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    using namespace std;
    typedef long long ll;
    int const maxn=1e5+5,maxm=320,mod=23333333;
    int n,f[maxn],g[maxm][maxn],s[maxn],t[maxn],ans;
    int main()
    {
        scanf("%d",&n);  int sq=sqrt(n);
        f[0]=1;
        for(int i=1;i<=sq;i++)
        {
            for(int j=0;j<=n;j++)s[j]=(f[j]+(j>=i?s[j-i]:0))%mod;
            for(int j=0;j<=n;j++)
            {
                f[j]=s[j];
                if(j>=(i+1)*i)f[j]=(f[j]-s[j-(i+1)*i]+mod)%mod;
            }
        }
        g[0][0]=1;
        ans=f[n];//
        for(int i=1;i<=sq;i++)
            for(int j=i*(sq+1);j<=n;j++)//i*
            {
                g[i][j]=(g[i-1][j-sq-1]+g[i][j-i])%mod;
                ans=(ans+(ll)g[i][j]*f[n-j]%mod)%mod;
            }
        printf("%d
    ",ans);
        return 0;
    }
  • 相关阅读:
    nginx之location、rewrite配置
    nio buffer
    分布式事务
    彻底剖析RMI底层源码 、手写轻量级RMI框架
    Java RMI详解
    Java提高篇——对象克隆(复制)
    序列化
    分布式通信-tcp/ip 广播
    分布式通信-tcp/ip 单播
    php 图像处理 抠图,生成背景透明png 图片
  • 原文地址:https://www.cnblogs.com/Zinn/p/9670115.html
Copyright © 2011-2022 走看看