近期补了一点信息论的知识,随笔记一下自己的理解;
参考以下文章:
《数学之美》第六章:信息的度量和作用
http://blog.sina.com.cn/s/blog_5fc770cd0100ia5k.html
http://blog.csdn.net/lk7688535/article/details/52529610
自信息量
一个事件e发生的自信息量
( I(e) = -log_{2}P(e) )
即事件的概率越小,发生这个事件所带来的自信息量越大;
不可能事件的自信息量是无穷,而必然事件的自信息量是0;
从信息论的角度看,当我们听到一件小概率事件发生时会感到震惊,其本质是受到了巨大信息量的冲击;
信息熵
一个变量X,可能有多种取值,每个取值结果对应一个事件,则这个变量的信息熵是所有取值结果(事件)信息量的加权(概率)平均;
( H(X) =-sumlimits_{x} P(x) log_2P(x))
熵反映不确定性;X每个取值结果(事件)发生概率越接近,不确定性越大,熵越大;
熵也是X变量的平均信息量,是X每个取值结果(事件)自信息量的期望;
联合熵
一对变量X、Y,可能有多种取值,每个取值组合对应一个事件,其信息熵即为X、Y的联合熵;
( H(X, Y) =-sumlimits_{x} sumlimits_{y} P(x,y) log_2 P(x,y) )
联合熵反映X、Y结果组合的不确定性;
( H(X,Y) <= H(X) + H(Y) ) 必定成立
如果X、Y完全相关,则( H(X) = H(Y) ,H(X,Y) = H(X) = H(Y) )
如果X、Y完全无关,则( H(X,Y) = H(X) + H(Y) )
即联合熵全部是由X、Y的不确定性引入的不确定度,不可能大于两个变量各自信息熵的总和;
条件熵
一对变量X、Y,可能有多种取值,每个取值组合对应一个事件,在给定X的条件下,Y的条件熵为:
( H(Y|X) = -sumlimits_{x} sumlimits_{y} P(x,y) log_2 P(y|x) )
与联合熵相比,虽然每个结果组合的出现概率没有变化,但出现时所带来的自信息量变为了-log2P(y|x);这是因为有了X做为先验;
同时,根据先验概率公式:
( P(y|x) = frac{P(x, y)}{P(x)})
对条件熵公式进行推导:
( H(Y|X) = -sumlimits_{x} sumlimits_{y} P(x,y) log_{2} frac{P(x, y)}{P(x)} )
( = -sumlimits_{x} sumlimits_{y} P(x,y)(log_{2}P(x, y) - log_{2}P(x)) )
( = -sumlimits_{x} sumlimits_{y} P(x,y)log_{2}P(x, y) + sumlimits{x} sumlimits{y} P(x,y)log_{2}P(x) )
( = H(X,Y) + sumlimits_{x}P(x)log_{2}P(x) )
( = H(X,Y) - H(X) )
即,有X先验条件下的Y的条件熵,相比于无先验条件下的X、Y的联合熵,只少掉了一个H(X),即X的信息熵;
即,有X先验条件下的Y的不确定度,相比于无先验条件下的X、Y的不确定度,少掉了X的不确定度;
即,由于引入了X的信息,联合熵减少掉了一定的不确定度,剩余的不确定度就是条件熵;
( H(Y|X) <= H(Y) ) 必定成立
如果X、Y完全相关,则( H(X) = H(Y),H(Y|X) = 0 )
如果X、Y完全无关,则( H(Y|X) = H(Y) )
即X先验条件的引入不会为Y增加不确定度,因而不可能大于Y自身的信息熵;
互信息
既然上面X的信息帮助联合熵消除不确定度,那么能否帮助Y消除不确定度呢?
如果X能帮助Y消除全部不确定度,那么X与Y完全相关,如果X不能帮助Y消除不确定度,则X与Y完全无关;
X通过消除Y的条件熵从而帮助Y消除掉不确定度,消除掉的不确定度即X与Y的互信息;
( I(X;Y) = H(Y) - H(Y|X) )
互信息是Y自身信息熵与有X先验条件下的Y条件熵的差值;
其公式推导的另一种结果为:
( I(X;Y) = -sumlimits_{x}sumlimits_{y}P(x,y)log_{2}frac{P(x,y)}{P(x)P(y)} )
即,X、Y的每个结果组合出现时,为互信息提供的信息量为( -log_{2}frac{P(x,y)}{P(x)P(y)} );
这个概率公式的意义我目前还想不明白;
另外,因为已知条件熵( H(Y|X) = H(X,Y) - H(X) ),所以互信息公式可以进一步推导:
( I(X;Y) = H(Y) + H(X) - H(X,Y) )
即互信息是联合熵比X、Y熵总和少的那部分不确定度;
如果X、Y完全相关,则( I(X;Y) = H(X) ),X、Y的互信息完全消除了X或Y的不确定性,因而条件熵为0;
如果X、Y完全无关,则( I(X;Y) = 0 ),X、Y没有互信息量,条件熵等同于无先验条件情况下的信息熵;
最后补一张图: