二次联通门 : luogu P3567 [POI2014]KUR-Couriers
MMP
指针 RE + MLE + WA.....
不得已...向黑恶的数组实力低头
/* 指针 */ #include <algorithm> #include <cstdio> #define Max 2000009 void read (int &now) { now = 0; register char word = getchar (); while (word < '0' || word > '9') word = getchar (); while (word >= '0' && word <= '9') { now = now * 10 + word - '0'; word = getchar (); } } inline int min (int a, int b) { return a < b ? a : b; } inline int max (int a, int b) { return a > b ? a : b; } struct Segment_Tree_Data { Segment_Tree_Data *Left, *Right; int key; Segment_Tree_Data () { key = 0; Left = Right = NULL; } }; Segment_Tree_Data *Root[Max]; int N, M; class Lasting_Segment_Tree_Type { private : int Query (Segment_Tree_Data *&Last, Segment_Tree_Data *&now, int l, int r) { if (l == r) return l; register int Mid = l + r >> 1; if (now->Left->key - Last->Left->key > Need) return Query (Last->Left, now->Left, l, Mid); else if (now->Left->key - Last->Right->key > Need) return Query (Last->Right, now->Right, Mid + 1, r); return 0; } int Need; public : void Build (Segment_Tree_Data *&now, int l, int r) { now = new Segment_Tree_Data; if (l == r) return ; register int Mid = l + r >> 1; Build (now->Left, l, Mid); Build (now->Right, Mid + 1, r); } void Updata (Segment_Tree_Data *Last, Segment_Tree_Data *&now, int pos, int l, int r) { now = new Segment_Tree_Data; now->key = Last->key + 1; if (l == r) return ; register int Mid = l + r >> 1; if (pos <= Mid) { now->Right = Last->Right; Updata (Last->Left, now->Left, pos, l, Mid); } else { now->Left = Last->Left; Updata (Last->Right, now->Right, pos, Mid + 1, r); } } int Query_Section (int l, int r) { Need = r - l + 1 >> 1; return Query (Root[l - 1], Root[r], 1, N); } }; Lasting_Segment_Tree_Type Tree; int rank[Max]; int number[Max]; int main (int argc, char *argv[]) { read (N); read (M); Tree.Build (Root[0], 1, N); for (int i = 1; i <= N; i++) { read (number[i]); Root[i] = Root[i - 1]; Tree.Updata (Root[i - 1], Root[i], number[i], 1, N); } for (int x, y; M--; ) { read (x); read (y); printf ("%d ", Tree.Query_Section (x, y)); } return 0; }
数组...
/* luogu P3567 [POI2014]KUR-Couriers 主席树 + 权值线段树 + 离散化 每次查询的时候向大于r-l+1 / 2的一边走 若查不到则返回0 */ #include <algorithm> #include <cstdio> #define Max 800006 void read (int &now) { now = 0; register char word = getchar (); while (word < '0' || word > '9') word = getchar (); while (word >= '0' && word <= '9') { now = now * 10 + word - '0'; word = getchar (); } } struct Segment_Tree_Date { int Left, Right; int key; }; int Root[Max]; Segment_Tree_Date tree[Max << 3]; class Lasting_Segment_Tree_Type { private : int Tree_Count; public : void Build (int &now, int l, int r) { now = ++Tree_Count; if (l == r) return ; register int Mid = l + r >> 1; Build (tree[now].Left, l, Mid); Build (tree[now].Right, Mid + 1, r); } void Updata (int Last, int &now, int l, int r, int pos) { now = ++Tree_Count; tree[now].key = tree[Last].key + 1; if (l == r) return ; int Mid = l + r >> 1; if (pos <= Mid) { tree[now].Right = tree[Last].Right; Updata (tree[Last].Left, tree[now].Left, l, Mid, pos); } else { tree[now].Left = tree[Last].Left; Updata (tree[Last].Right, tree[now].Right, Mid + 1, r, pos); } } int Query (int Last, int now, int l, int r, int Need) { if (l == r) return l; register int Mid = l + r >> 1; if (tree[tree[now].Left].key - tree[tree[Last].Left].key > Need) return Query (tree[Last].Left, tree[now].Left, l, Mid, Need); else if (tree[tree[now].Right].key - tree[tree[Last].Right].key > Need) return Query (tree[Last].Right, tree[now].Right, Mid + 1, r, Need); return 0; } }; int N, M; int number[Max]; int rank[Max]; Lasting_Segment_Tree_Type Tree; int main (int argc, char *argv[]) { read (N); read (M); for (int i = 1; i <= N; i++) { read (number[i]); rank[i] = number[i]; } std :: sort (rank + 1, rank + 1 + N); int Size = std :: unique (rank + 1, rank + 1 + N) - rank - 1; Tree.Build (Root[0], 1, Size); for (int i = 1; i <= N; i++) { number[i] = std :: lower_bound (rank + 1, rank + 1 + Size, number[i]) - rank; Tree.Updata (Root[i - 1], Root[i], 1, Size, number[i]); } for (int x, y; M--; ) { read (x); read (y); printf ("%d ", rank[Tree.Query (Root[x - 1], Root[y], 1, Size, y - x + 1 >> 1)]); } return 0; }