二次联通门 : BZOJ 1036: [ZJOI2008]树的统计Count
/* BZOJ 1036: [ZJOI2008]树的统计Count 树链剖分板子题 */ #include <cstdio> #include <iostream> #define rg register #define Max 300007 #define INF 1e8 const int BUF = 12312331; char Buf[BUF], *buf = Buf; inline void read (int &n) { bool t = false; for (n = 0; !isdigit (*buf); ++ buf) if (*buf == '-') t = true; for (; isdigit (*buf); n = n * 10 + *buf - '0', ++ buf); if (t) n = -n; } struct E { E *n; int v; } *list[Max], poor[Max << 1], *Ta = poor; int N, in[Max], tk[Max], TC, key[Max]; int GT () { for (; (*buf) != 'Q' && (*buf) != 'C'; ++ buf); if (*(buf + 1) == 'M') return 2; else if (*(buf + 1) == 'S') return 1; return 3; } inline int min (int a, int b) { return a < b ? a : b; } inline int max (int a, int b) { return a > b ? a : b; } struct SD { SD *L, *R; int l, r, m, mx, s; inline void Up () { mx = max (L->mx, R->mx), s = L->s + R->s; } } poorT[Max << 2 | 1], *TT = poorT; class SegmentTRee { private : SD *Root; private : inline SD* New (int _l, int _r) { ++ TT, TT->L = TT->R = NULL; TT->mx = TT->s = 0; TT->l = _l, TT->r = _r, TT->m = _l + _r >> 1; return TT; } void Build (SD *&n, int l, int r) { n = New (l, r); if (l == r) { n->mx = n->s = tk[l]; return ; } Build (n->L, l, n->m), Build (n->R, n->m + 1, r); n->Up (); } void C (SD *&n, int p, int t) { if (n->l == n->r) { n->mx = n->s = t; return ; } if (p <= n->m) C (n->L, p, t); else C (n->R, p, t); n->Up (); } int Q (SD *&n, int l, int r, bool t) { if (l <= n->l && n->r <= r) { if (t) return n->s; return n->mx; } int A, B; if (t) A = B = 0; else A = B = -INF; if (l <= n->m) A = Q (n->L, l, r, t); if (r > n->m) B = Q (n->R, l, r, t); return t ? A + B : max (A, B); } public : void Build (int l, int r) { return Build (Root, l, r); } void C (int p, int t) { return C (Root, p, t); } int Q_max (int l, int r) { return Q (Root, l, r, false); } int Q_sum (int l, int r) { return Q (Root, l, r, true); } } Seg; inline void swap (int &a, int &b) { int c = a; a = b, b = c; } inline void cmax (int &a, int b) { if (b > a) a = b; } class TreeChain { private : int d[Max], s[Max], son[Max], c[Max], f[Max]; private : void Dfs_1 (int n, int F) { s[n] = 1, d[n] = d[F] + 1, f[n] = F; int V; for (E *e = list[n]; e; e = e->n) if ((V = e->v) != F) { Dfs_1 (V, n); s[n] += s[V]; if (s[son[n]] < s[V]) son[n] = V; } } void Dfs_2 (int n, int C) { c[n] = C; in[n] = ++ TC, tk[TC] = key[n]; if (son[n]) Dfs_2 (son[n], C); else return ; int V; for (E *e = list[n]; e; e = e->n) if ((V = e->v) != f[n] && V != son[n]) Dfs_2 (V, V); } inline int Q (int x, int y, bool t) { int r; if (t) r = 0; else r = -INF; for (; c[x] != c[y]; x = f[c[x]]) { if (d[c[x]] < d[c[y]]) swap (x, y); if (t) r += Seg.Q_sum (in[c[x]], in[x]); else cmax (r, Seg.Q_max (in[c[x]], in[x])); } if (d[x] > d[y]) swap (x, y); return t ? (r + Seg.Q_sum (in[x], in[y])) : (max (r, Seg.Q_max (in[x], in[y]))); } public : inline void Prepare () { Dfs_1 (1, 0), Dfs_2 (1, 1), Seg.Build (1, N); } inline void C (int p, int t) { return Seg.C (in[p], t); } inline int Q_max (int x, int y) { return Q (x, y, false); } inline int Q_sum (int x, int y) { return Q (x, y, true); } } T; int main (int argc, char *argv[]) { fread (buf, 1, BUF, stdin); int i, j; int x, y; read (N); for (i = 1; i < N; ++ i) { read (x), read (y); ++ Ta, Ta->v = y, Ta->n = list[x], list[x] = Ta; ++ Ta, Ta->v = x, Ta->n = list[y], list[y] = Ta; } for (i = 1; i <= N; ++ i) read (key[i]); for (read (N), T.Prepare (); N; -- N) { i = GT (); read (x), read (y); if (i == 1) printf ("%d ", T.Q_sum (x, y)); else if (i == 2) printf ("%d ", T.Q_max (x, y)); else T.C (x, y); } return 0; }