二次联通门 : BZOJ 3771: Triple
依旧是权限题放题面
/* BZOJ 3771: Triple 考虑构造三个生成函数 A为原斧子价值的生成函数 B为斧子价值两倍的生成函数 C为斧子价值三倍的生成函数 即一次拿1/2/3把 然后直接乘的话是会出现重复的 所以要进行一下容斥 最终的多项式即为A+(A*A-B)/2+(A*A*A-3*A*B+2*C)/6 发现直接算是O(N^2)的,所以用FFT加速 */ #include <cstdio> #include <iostream> #include <cmath> #define rg register inline void read (int &n) { rg char c = getchar (); for (n = 0; !isdigit (c); c = getchar ()); for (; isdigit (c); n = n * 10 + c - '0', c = getchar ()); } typedef double flo; const flo PI = acos (-1.0); struct vec { flo x, y; vec (flo a = 0, flo b = 0) : x (a), y (b) { } vec operator + (const vec &rhs) { return vec (x + rhs.x, y + rhs.y); } vec operator - (const vec &rhs) { return vec (x - rhs.x, y - rhs.y); } vec operator * (const vec &rhs) { return vec (x * rhs.x - y * rhs.y, x * rhs.y + y * rhs.x); } vec operator /= (const flo &k) { return x /= k, y /= k, *this; } vec operator * (flo k) { return vec (x * k, y * k); } vec operator / (const flo &k) { return vec (x / k, y / k); } }; #define Max 1000005 int rd[Max]; vec a[Max], b[Max], c[Max]; void DFT (vec *a, int N, int f = 1) { rg int i, j, k; vec wn, w, x, y; for (i = 0; i < N; ++ i) if (rd[i] > i) std :: swap (a[i], a[rd[i]]); for (k = 1; k < N; k <<= 1) { wn = vec (cos (PI / k), f * sin (PI / k)); for (j = 0; j < N; j += k << 1) for (i = 0, w = vec (1, 0); i < k; ++ i, w = w * wn) x = a[i + j], y = a[i + j + k] * w, a[i + j] = x + y, a[i + j + k] = x - y; } if (f == -1) for (i = 0; i < N; ++ i) a[i] /= N; } inline void cmax (int &a, int b) { if (b > a) a = b; } int main (int argc, char *argv[]) { int N, L, x; read (N); rg int i; L = N; for (; L; -- L) read (x), ++ a[x].x, ++ b[x << 1].x, ++ c[x * 3].x, cmax (N, x * 3); int M = N << 1; L = 0; for (N = 1; N <= M; N <<= 1, ++ L); for (i = 1; i < N; ++ i) rd[i] = (rd[i >> 1] >> 1) | ((i & 1) << (L - 1)); DFT (a, N), DFT (b, N), DFT (c, N); for (i = 0; i < N; ++ i) a[i] = a[i] + (a[i] * a[i] - b[i]) / 2 + (a[i] * a[i] * a[i] - a[i] * b[i] * 3 + c[i] * 2) / 6; DFT (a, N, -1); for (i = 0; i < N; ++ i) if (int (a[i].x + 0.1)) printf ("%d %d ", i, int (a[i].x + 0.1)); return 0; }