zoukankan      html  css  js  c++  java
  • BZOJ 2005: [Noi2010]能量采集

    二次联通门 : BZOJ 2005: [Noi2010]能量采集

    $LARGE Answer=2*(sum _{i=1}^{n}sum_{j=1}^mgcd(i,j))-nm$

    重点是求$LARGE sum ^{n}_{i=1}sum ^{m}_{j=1}gcd left( i,j ight)$

     
    由定理 : 一个数等于它约数的欧拉函数之和
     
     
    $LARGE n=sum _{d|n}varphi left( d ight)$
     
     
    可知:
     
     
       $LARGE sum ^{n}_{i=1}sum ^{m}_{j=1}gcd left( i,j ight)$
     
    $LARGE =sum ^{n}_{i=1}sum ^{m}_{j=1}sum _{d|gcd left( i,j ight) }varphi left( d ight)$
     
    $LARGE =sum ^{max left( n,m ight) }_{d=1}varphi left( d ight) sum ^{n/d}_{i=1}sum ^{m/d}_{j=1}1$
     
    $LARGE =sum ^{max left( n,m ight) }_{d=1}varphi left( n ight) lfloor dfrac {n}{d} floor lfloor dfrac {m}{d} floor$
     

    然后除法分块,对欧拉函数做前缀和即可 

    /*
        BZOJ 2005: [Noi2010]能量采集
    
        莫比乌斯反演
    */
    #include <cstdio>
    #include <iostream>
    #include <cmath>
    
    #define rg register
    #define Max 1000005
    int p[Max], phi[Max];
    bool is[Max];
    typedef long long LL;
    LL s[Max];
    void Euler (int N)
    {
        int C = 0; phi[1] = 1; rg int i, j;
        for (i = 2; i <= N; ++ i)
        {
            if (!is[i]) p[++ C] = i, phi[i] = i - 1;
            for (j = 1; j <= C && i * p[j] <= N; ++ j)
            {
                is[i * p[j]] = true;
                if (i % p[j] == 0) phi[i * p[j]] = phi[i] * p[j];
                else phi[i * p[j]] = phi[i] * (p[j] - 1);
            }
        }
        for (i = 1; i <= N; ++ i) s[i] = s[i - 1] + phi[i];
    }
    inline int min (int a, int b) { return a < b ? a : b; }
    
    int main (int argc, char *argv[])
    {
        int N, M; scanf ("%d%d", &N, &M); rg int i, j; 
        if (N > M) std :: swap (N, M);
        Euler (N); 
        LL Answer = 0;
        for (i = 1; i <= N; i = j + 1)
        {
            j = min (N / (N / i), M / (M / i));
            Answer += (LL) (s[j] - s[i - 1]) * (N / i) * (M / i);
        }
        Answer = (LL) Answer * 2 - (LL) N * M;
        std :: cout << Answer;    
        return 0;
    }
  • 相关阅读:
    .net Application的目录
    (转载).NET中RabbitMQ的使用
    (转载)RabbitMQ消息队列应用
    说说JSON和JSONP
    SQL Server中的事务与锁
    StackExchange.Redis Client(转载)
    正则语法的查询,这是纯转载的,为了方便查询
    Regex的性能问题
    解决json日期格式问题的办法
    BenchmarkDotNet(性能测试)
  • 原文地址:https://www.cnblogs.com/ZlycerQan/p/8064150.html
Copyright © 2011-2022 走看看