zoukankan      html  css  js  c++  java
  • 数据结构笔记-----图

    图的定义




    都是图,可以用来描述生活里的各种情况

    社交网络应用







    小结




    图的存储结构

    邻接矩阵法







    代码:


    <strong><span style="font-size:18px;">#ifndef _MGRAPH_H_
    #define _MGRAPH_H_
    
    typedef void MGraph;
    typedef void MVertex;
    typedef void (MGraph_Printf)(MVertex*);
    
    MGraph* MGraph_Create(MVertex** v, int n);
    
    void MGraph_Destroy(MGraph* graph);
    
    void MGraph_Clear(MGraph* graph);
    
    int MGraph_AddEdge(MGraph* graph, int v1, int v2, int w);
    
    int MGraph_RemoveEdge(MGraph* graph, int v1, int v2);
    
    int MGraph_GetEdge(MGraph* graph, int v1, int v2);
    
    int MGraph_TD(MGraph* graph, int v);
    
    int MGraph_VertexCount(MGraph* graph);
    
    int MGraph_EdgeCount(MGraph* graph);
    
    void MGraph_DFS(MGraph* graph, int v, MGraph_Printf* pFunc);
    
    void MGraph_BFS(MGraph* graph, int v, MGraph_Printf* pFunc);
    
    void MGraph_Display(MGraph* graph, MGraph_Printf* pFunc);
    
    #endif</span></strong>


    <strong><span style="font-size:18px;">#include <malloc.h>
    #include <stdio.h>
    #include "MGraph.h"
    #include "LinkQueue.h"
    
    typedef struct _tag_MGraph
    {
        int count;
        MVertex** v;
        int** matrix;
    } TMGraph;
    
    static void recursive_dfs(TMGraph* graph, int v, int visited[], MGraph_Printf* pFunc)
    {
        int i = 0;
        
        pFunc(graph->v[v]);
        
        visited[v] = 1;
        
        printf(", ");
        
        for(i=0; i<graph->count; i++)
        {
            if( (graph->matrix[v][i] != 0) && !visited[i] )
            {
                recursive_dfs(graph, i, visited, pFunc);
            }
        }
    }
    
    static void bfs(TMGraph* graph, int v, int visited[], MGraph_Printf* pFunc)
    {
        LinkQueue* queue = LinkQueue_Create();
        
        if( queue != NULL )
        {
            LinkQueue_Append(queue, graph->v + v);
               //不可以在队列中加入值为0的元素
            visited[v] = 1;
            
            while( LinkQueue_Length(queue) > 0 )
            {
                int i = 0;
                
                v = (MVertex**)LinkQueue_Retrieve(queue) - graph->v;
                
                pFunc(graph->v[v]);
                
                printf(", ");
                
                for(i=0; i<graph->count; i++)
                {
                    if( (graph->matrix[v][i] != 0) && !visited[i] )
                    {
                        LinkQueue_Append(queue, graph->v + i);
                        
                        visited[i] = 1;
                    }
                }
            }
        }
        
        LinkQueue_Destroy(queue);
    }
    
    MGraph* MGraph_Create(MVertex** v, int n)  // O(n)
    {
        TMGraph* ret = NULL;
        
        if( (v != NULL ) && (n > 0) )
        {
            ret = (TMGraph*)malloc(sizeof(TMGraph));
            
            if( ret != NULL )
            {
                int* p = NULL;
                
                ret->count = n;
                
                ret->v = (MVertex**)malloc(sizeof(MVertex*) * n);
                //结点 
                ret->matrix = (int**)malloc(sizeof(int*) * n);
                //通过二级指针动态申请一维指针数组 
                p = (int*)calloc(n * n, sizeof(int));
                //通过一级指针申请数据空间 
                if( (ret->v != NULL) && (ret->matrix != NULL) && (p != NULL) )
                {
                    int i = 0;
                    
                    for(i=0; i<n; i++)
                    {
                        ret->v[i] = v[i];
                        ret->matrix[i] = p + i * n;
                        //将一维指针数组中的指针连接到数据空间 
                    }
                }
                else
                {//异常处理 
                    free(p);
                    free(ret->matrix);
                    free(ret->v);
                    free(ret);
                    
                    ret = NULL;
                }
            }
        }
        
        return ret;
    }
    
    void MGraph_Destroy(MGraph* graph) // O(1)
    {
        TMGraph* tGraph = (TMGraph*)graph;
        
        if( tGraph != NULL )
        {
            free(tGraph->v);
            free(tGraph->matrix[0]);
            //释放首地址 
            free(tGraph->matrix);
            //释放一维数组 
            free(tGraph);
            //这几步不能乱 
        }
    }
    
    void MGraph_Clear(MGraph* graph) // O(n*n)
    {
        TMGraph* tGraph = (TMGraph*)graph;
        
        if( tGraph != NULL )
        {
            int i = 0;
            int j = 0;
            
            for(i=0; i<tGraph->count; i++)
            {
                for(j=0; j<tGraph->count; j++)
                {
                    tGraph->matrix[i][j] = 0;
                }
            }
        }
    }
    
    int MGraph_AddEdge(MGraph* graph, int v1, int v2, int w) // O(1)
    {
        TMGraph* tGraph = (TMGraph*)graph;
        int ret = (tGraph != NULL);
        
        ret = ret && (0 <= v1) && (v1 < tGraph->count);
        ret = ret && (0 <= v2) && (v2 < tGraph->count);
        ret = ret && (0 <= w);
        
        if( ret )
        {
            tGraph->matrix[v1][v2] = w;
        }
        
        return ret;
    }
    
    int MGraph_RemoveEdge(MGraph* graph, int v1, int v2) // O(1)
    {
        int ret = MGraph_GetEdge(graph, v1, v2);
        
        if( ret != 0 )
        {
            ((TMGraph*)graph)->matrix[v1][v2] = 0;
        }
        
        return ret;
    }
    
    int MGraph_GetEdge(MGraph* graph, int v1, int v2) // O(1)
    {
        TMGraph* tGraph = (TMGraph*)graph;
        int condition = (tGraph != NULL);
        int ret = 0;
        
        condition = condition && (0 <= v1) && (v1 < tGraph->count);
        condition = condition && (0 <= v2) && (v2 < tGraph->count);
        
        if( condition )
        {
            ret = tGraph->matrix[v1][v2];
        }
        
        return ret;
    }
    
    int MGraph_TD(MGraph* graph, int v) // O(n) 度 
    {
        TMGraph* tGraph = (TMGraph*)graph;
        int condition = (tGraph != NULL);
        int ret = 0;
        
        condition = condition && (0 <= v) && (v < tGraph->count);
        
        if( condition )
        {
            int i = 0;
            
            for(i=0; i<tGraph->count; i++)
            {
                if( tGraph->matrix[v][i] != 0 )
                {
                    ret++;
                }
                
                if( tGraph->matrix[i][v] != 0 )
                {
                    ret++;
                }
            }
        }
        
        return ret;
    }
    
    int MGraph_VertexCount(MGraph* graph) // O(1)
    {
        TMGraph* tGraph = (TMGraph*)graph;
        int ret = 0;
        
        if( tGraph != NULL )
        {
            ret = tGraph->count;
        }
        
        return ret;
    }
    
    int MGraph_EdgeCount(MGraph* graph) // O(n*n)
    {
        TMGraph* tGraph = (TMGraph*)graph;
        int ret = 0;
        
        if( tGraph != NULL )
        {
            int i = 0;
            int j = 0;
            
            for(i=0; i<tGraph->count; i++)
            {
                for(j=0; j<tGraph->count; j++)
                {
                    if( tGraph->matrix[i][j] != 0 )
                    {
                        ret++;
                    }
                }
            }
        }
        
        return ret;
    }
    
    void MGraph_DFS(MGraph* graph, int v, MGraph_Printf* pFunc)
    {//深度优先遍历
        TMGraph* tGraph = (TMGraph*)graph;
        int* visited = NULL;
        int condition = (tGraph != NULL);
        
        condition = condition && (0 <= v) && (v < tGraph->count);
        condition = condition && (pFunc != NULL);
        condition = condition && ((visited = (int*)calloc(tGraph->count, sizeof(int))) != NULL);
        
        if( condition )
        {
            int i = 0;
            
            recursive_dfs(tGraph, v, visited, pFunc);
            
            for(i=0; i<tGraph->count; i++)
            {
                if( !visited[i] )
                {
                    recursive_dfs(tGraph, i, visited, pFunc);
                }
            }
            
            printf("
    ");
        }
        
        free(visited);
    }</span></strong>
    <strong><span style="font-size:18px;">void MGraph_BFS(MGraph* graph, int v, MGraph_Printf* pFunc)
    {//广度优先遍历 
        TMGraph* tGraph = (TMGraph*)graph;
        int* visited = NULL;
        int condition = (tGraph != NULL);
        
        condition = condition && (0 <= v) && (v < tGraph->count);
        condition = condition && (pFunc != NULL);
        condition = condition && ((visited = (int*)calloc(tGraph->count, sizeof(int))) != NULL);
        
        if( condition )
        {
            int i = 0;
            
            bfs(tGraph, v, visited, pFunc);
            
            for(i=0; i<tGraph->count; i++)
            {
                if( !visited[i] )
                {
                    bfs(tGraph, i, visited, pFunc);
                }
            }
            
            printf("
    ");
        }
        
        free(visited);
    }
    
    void MGraph_Display(MGraph* graph, MGraph_Printf* pFunc) // O(n*n)
    {         //MGraph_Display(graph, print_data);
        TMGraph* tGraph = (TMGraph*)graph;
        
        if( (tGraph != NULL) && (pFunc != NULL) )
        {
            int i = 0;
            int j = 0;
            
            for(i=0; i<tGraph->count; i++)
            {
                printf("%d:", i);
                pFunc(tGraph->v[i]);
                printf(" ");
            }
            
            printf("
    ");
            
            for(i=0; i<tGraph->count; i++)
            {
                for(j=0; j<tGraph->count; j++)
                {
                    if( tGraph->matrix[i][j] != 0 )
                    {
                        printf("<");
                        pFunc(tGraph->v[i]);
                        //print_data
                        printf(", ");
                        pFunc(tGraph->v[j]);
                        printf(", %d", tGraph->matrix[i][j]);
                        printf(">");
                        printf(" ");
                    }
                }
            }
            
            printf("
    ");
        }
    }
    </span></strong>


    <strong><span style="font-size:18px;">#include <stdio.h>
    #include <stdlib.h>
    #include "MGraph.h"
    
    /* run this program using the console pauser or add your own getch, system("pause") or input loop */
    
    void print_data(MVertex* v)
    {
        printf("%s", (char*)v);
    }
    
    int main(int argc, char *argv[])
    {
        MVertex* v[] = {"A", "B", "C", "D", "E", "F"};
        MGraph* graph = MGraph_Create(v, 6);
        
        MGraph_AddEdge(graph, 0, 1, 1);
        MGraph_AddEdge(graph, 0, 2, 1);
        MGraph_AddEdge(graph, 0, 3, 1);
        MGraph_AddEdge(graph, 1, 5, 1);
        MGraph_AddEdge(graph, 1, 4, 1);
        MGraph_AddEdge(graph, 2, 1, 1);
        MGraph_AddEdge(graph, 3, 4, 1);
        MGraph_AddEdge(graph, 4, 2, 1);
        
        MGraph_Display(graph, print_data);
        
        MGraph_DFS(graph, 0, print_data);
        MGraph_BFS(graph, 0, print_data);
        
        MGraph_Destroy(graph);
        
    	return 0;
    }</span></strong>


    图的遍历


    深度优先遍历



    广度优先遍历




    代码

    <strong><span style="font-size:18px;">#include <malloc.h>
    #include <stdio.h>
    #include "LGraph.h"
    #include "LinkList.h"
    #include "LinkQueue.h"
    
    typedef struct _tag_LGraph
    {
        int count;
        LVertex** v;
        LinkList** la;
    } TLGraph;
    
    typedef struct _tag_ListNode
    {
        LinkListNode header;
        int v;
        int w;
    } TListNode;
    
    static void recursive_dfs(TLGraph* graph, int v, int visited[], LGraph_Printf* pFunc)
    {
        int i = 0;
        
        pFunc(graph->v[v]);
        
        visited[v] = 1;
        
        printf(", ");
        
        for(i=0; i<LinkList_Length(graph->la[v]); i++)
        {
            TListNode* node = (TListNode*)LinkList_Get(graph->la[v], i);
            
            if( !visited[node->v] )
            {
                recursive_dfs(graph, node->v, visited, pFunc);
            }
        }
    }
    
    static void bfs(TLGraph* graph, int v, int visited[], LGraph_Printf* pFunc)
    {
        LinkQueue* queue = LinkQueue_Create();
        
        if( queue != NULL )
        {
            LinkQueue_Append(queue, graph->v + v);
            
            visited[v] = 1;
            
            while( LinkQueue_Length(queue) > 0 )
            {
                int i = 0;
                
                v = (LVertex**)LinkQueue_Retrieve(queue) - graph->v;
                
                pFunc(graph->v[v]);
                
                printf(", ");
                
                for(i=0; i<LinkList_Length(graph->la[v]); i++)
                {
                    TListNode* node = (TListNode*)LinkList_Get(graph->la[v], i);
                    
                    if( !visited[node->v] )
                    {
                        LinkQueue_Append(queue, graph->v + node->v);
                        
                        visited[node->v] = 1;
                    }
                }
            }
        }
        
        LinkQueue_Destroy(queue);
    }
    
    LGraph* LGraph_Create(LVertex** v, int n)  // O(n)
    {
        TLGraph* ret = NULL;
        int ok = 1;
        
        if( (v != NULL ) && (n > 0) )
        {
            ret = (TLGraph*)malloc(sizeof(TLGraph));
            
            if( ret != NULL )
            {
                ret->count = n;
                
                ret->v = (LVertex**)calloc(n, sizeof(LVertex*));
                
                ret->la = (LinkList**)calloc(n, sizeof(LinkList*));
                
                ok = (ret->v != NULL) && (ret->la != NULL);
                
                if( ok )
                {
                    int i = 0;
                    
                    for(i=0; i<n; i++)
                    {
                        ret->v[i] = v[i];
                    }
                    
                    for(i=0; (i<n) && ok; i++)
                    {
                        ok = ok && ((ret->la[i] = LinkList_Create()) != NULL);
                    }
                }
                
                if( !ok )
                {
                    if( ret->la != NULL )
                    {
                        int i = 0;
                        
                        for(i=0; i<n; i++)
                        {
                            LinkList_Destroy(ret->la[i]);
                        }
                    }
                    
                    free(ret->la);
                    free(ret->v);
                    free(ret);
                    
                    ret = NULL;
                }
            }
        }
        
        return ret;
    }
    
    void LGraph_Destroy(LGraph* graph) // O(n*n)
    {
        TLGraph* tGraph = (TLGraph*)graph;
        
        LGraph_Clear(tGraph);
        
        if( tGraph != NULL )
        {
            int i = 0;
            
            for(i=0; i<tGraph->count; i++)
            {
                LinkList_Destroy(tGraph->la[i]);
            }
            
            free(tGraph->la);
            free(tGraph->v);
            free(tGraph);
        }
    }
    
    void LGraph_Clear(LGraph* graph) // O(n*n)
    {
        TLGraph* tGraph = (TLGraph*)graph;
        
        if( tGraph != NULL )
        {
            int i = 0;
            
            for(i=0; i<tGraph->count; i++)
            {
                while( LinkList_Length(tGraph->la[i]) > 0 )
                {
                    free(LinkList_Delete(tGraph->la[i], 0));
                }
            }
        }
    }
    
    int LGraph_AddEdge(LGraph* graph, int v1, int v2, int w) // O(1)
    {
        TLGraph* tGraph = (TLGraph*)graph;
        TListNode* node = NULL;
        int ret = (tGraph != NULL);
        
        ret = ret && (0 <= v1) && (v1 < tGraph->count);
        ret = ret && (0 <= v2) && (v2 < tGraph->count);
        ret = ret && (0 < w) && ((node = (TListNode*)malloc(sizeof(TListNode))) != NULL);
        
        if( ret )
        {
           node->v = v2;
           node->w = w;
           
           LinkList_Insert(tGraph->la[v1], (LinkListNode*)node, 0);
        }
        
        return ret;
    }
    
    int LGraph_RemoveEdge(LGraph* graph, int v1, int v2) // O(n*n)
    {
        TLGraph* tGraph = (TLGraph*)graph;
        int condition = (tGraph != NULL);
        int ret = 0;
        
        condition = condition && (0 <= v1) && (v1 < tGraph->count);
        condition = condition && (0 <= v2) && (v2 < tGraph->count);
        
        if( condition )
        {
            TListNode* node = NULL;
            int i = 0;
            
            for(i=0; i<LinkList_Length(tGraph->la[v1]); i++)
            {
                node = (TListNode*)LinkList_Get(tGraph->la[v1], i);
                
                if( node->v == v2)
                {
                    ret = node->w;
                    
                    LinkList_Delete(tGraph->la[v1], i);
                    
                    free(node);
                    
                    break;
                }
            }
        }
        
        return ret;
    }
    
    int LGraph_GetEdge(LGraph* graph, int v1, int v2) // O(n*n)
    {
        TLGraph* tGraph = (TLGraph*)graph;
        int condition = (tGraph != NULL);
        int ret = 0;
        
        condition = condition && (0 <= v1) && (v1 < tGraph->count);
        condition = condition && (0 <= v2) && (v2 < tGraph->count);
        
        if( condition )
        {
            TListNode* node = NULL;
            int i = 0;
            
            for(i=0; i<LinkList_Length(tGraph->la[v1]); i++)
            {
                node = (TListNode*)LinkList_Get(tGraph->la[v1], i);
                
                if( node->v == v2)
                {
                    ret = node->w;
                    
                    break;
                }
            }
        }
        
        return ret;
    }
    
    int LGraph_TD(LGraph* graph, int v) // O(n*n*n)
    {
        TLGraph* tGraph = (TLGraph*)graph;
        int condition = (tGraph != NULL);
        int ret = 0;
        
        condition = condition && (0 <= v) && (v < tGraph->count);
        
        if( condition )
        {
            int i = 0;
            int j = 0;
            
            for(i=0; i<tGraph->count; i++)
            {
                for(j=0; j<LinkList_Length(tGraph->la[i]); j++)
                {
                    TListNode* node = (TListNode*)LinkList_Get(tGraph->la[i], j);
                    
                    if( node->v == v )
                    {
                        ret++;
                    }
                }
            }
            
            ret += LinkList_Length(tGraph->la[v]);
        }
        
        return ret;
    }
    
    int LGraph_VertexCount(LGraph* graph) // O(1)
    {
        TLGraph* tGraph = (TLGraph*)graph;
        int ret = 0;
        
        if( tGraph != NULL )
        {
            ret = tGraph->count;
        }
        
        return ret;
    }
    
    int LGraph_EdgeCount(LGraph* graph) // O(n)
    {
        TLGraph* tGraph = (TLGraph*)graph;
        int ret = 0;
        
        if( tGraph != NULL )
        {
            int i = 0;
            
            for(i=0; i<tGraph->count; i++)
            {
                ret += LinkList_Length(tGraph->la[i]);
            }
        }
        
        return ret;
    }
    
    void LGraph_DFS(LGraph* graph, int v, LGraph_Printf* pFunc)
    {
        TLGraph* tGraph = (TLGraph*)graph;
        int* visited = NULL;
        int condition = (tGraph != NULL);
        
        condition = condition && (0 <= v) && (v < tGraph->count);
        condition = condition && (pFunc != NULL);
        condition = condition && ((visited = (int*)calloc(tGraph->count, sizeof(int))) != NULL);
        
        if( condition )
        {
            int i = 0;
            
            recursive_dfs(tGraph, v, visited, pFunc);
            
            for(i=0; i<tGraph->count; i++)
            {
                if( !visited[i] )
                {
                    recursive_dfs(tGraph, i, visited, pFunc);
                }
            }
            
            printf("
    ");
        }
        
        free(visited);
    }
    
    void LGraph_BFS(LGraph* graph, int v, LGraph_Printf* pFunc)
    {//借助队列实现 
        TLGraph* tGraph = (TLGraph*)graph;
        int* visited = NULL;
        int condition = (tGraph != NULL);
        
        condition = condition && (0 <= v) && (v < tGraph->count);
        condition = condition && (pFunc != NULL);
        condition = condition && ((visited = (int*)calloc(tGraph->count, sizeof(int))) != NULL);
        
        if( condition )
        {
            int i = 0;
            
            bfs(tGraph, v, visited, pFunc);
            
            for(i=0; i<tGraph->count; i++)
            {
                if( !visited[i] )
                {
                    bfs(tGraph, i, visited, pFunc);
                }
            }
            
            printf("
    ");
        }
        
        free(visited);
    }
    
    void LGraph_Display(LGraph* graph, LGraph_Printf* pFunc) // O(n*n*n)
    {
        TLGraph* tGraph = (TLGraph*)graph;
        
        if( (tGraph != NULL) && (pFunc != NULL) )
        {
            int i = 0;
            int j = 0;
            
            for(i=0; i<tGraph->count; i++)
            {
                printf("%d:", i);
                pFunc(tGraph->v[i]);
                printf(" ");
            }
            
            printf("
    ");
            
            for(i=0; i<tGraph->count; i++)
            {
                for(j=0; j<LinkList_Length(tGraph->la[i]); j++)
                {
                    TListNode* node = (TListNode*)LinkList_Get(tGraph->la[i], j);
                    
                    printf("<");
                    pFunc(tGraph->v[i]);
                    printf(", ");
                    pFunc(tGraph->v[node->v]);
                    printf(", %d", node->w);
                    printf(">");
                    printf(" ");               
                }
            }
            
            printf("
    ");
        }
    }
    </span></strong>

    <strong><span style="font-size:18px;">#ifndef _LGRAPH_H_
    #define _LGRAPH_H_
    
    typedef void LGraph;
    typedef void LVertex;
    typedef void (LGraph_Printf)(LVertex*);
    
    LGraph* LGraph_Create(LVertex** v, int n);
    
    void LGraph_Destroy(LGraph* graph);
    
    void LGraph_Clear(LGraph* graph);
    
    int LGraph_AddEdge(LGraph* graph, int v1, int v2, int w);
    
    int LGraph_RemoveEdge(LGraph* graph, int v1, int v2);
    
    int LGraph_GetEdge(LGraph* graph, int v1, int v2);
    
    int LGraph_TD(LGraph* graph, int v);
    
    int LGraph_VertexCount(LGraph* graph);
    
    int LGraph_EdgeCount(LGraph* graph);
    
    void LGraph_DFS(LGraph* graph, int v, LGraph_Printf* pFunc);
    
    void LGraph_BFS(LGraph* graph, int v, LGraph_Printf* pFunc);
    
    void LGraph_Display(LGraph* graph, LGraph_Printf* pFunc);
    
    #endif</span></strong>

    <strong><span style="font-size:18px;">#include <stdio.h>
    #include <stdlib.h>
    #include "LGraph.h"
    
    /* run this program using the console pauser or add your own getch, system("pause") or input loop */
    
    void print_data(LVertex* v)
    {
        printf("%s", (char*)v);
    }
    
    int main(int argc, char *argv[])
    {
        LVertex* v[] = {"A", "B", "C", "D", "E", "F"};
        LGraph* graph = LGraph_Create(v, 6);
        
        LGraph_AddEdge(graph, 0, 1, 1);
        LGraph_AddEdge(graph, 0, 2, 1);
        LGraph_AddEdge(graph, 0, 3, 1);
        LGraph_AddEdge(graph, 1, 5, 1);
        LGraph_AddEdge(graph, 1, 4, 1);
        LGraph_AddEdge(graph, 2, 1, 1);
        LGraph_AddEdge(graph, 3, 4, 1);
        LGraph_AddEdge(graph, 4, 2, 1);
        
        LGraph_Display(graph, print_data);
        
        LGraph_DFS(graph, 0, print_data);
        LGraph_BFS(graph, 0, print_data);
        
        LGraph_Destroy(graph);
        
    	return 0;
    }</span></strong>

    邻接矩阵法实现在上面图的存储结构代码


    小结

    广度优先遍历与深度优先遍历是图结构的基础算法,也是其他图算法的基础。


    思考:

    借助栈数据结构


    最小连通网

    运营商的挑战


    备选方案




    Prim算法



    代码


    Prim.c

    <strong><span style="font-size:18px;">#include <stdio.h>
    #include <stdlib.h>
    
    /* run this program using the console pauser or add your own getch, system("pause") or input loop */
    
    #define VNUM 9
    #define MV 65536
    
    int P[VNUM];//结点 
    int Cost[VNUM];//边的耗费 
    int Mark[VNUM];
    int Matrix[VNUM][VNUM] =
    {
        {0, 10, MV, MV, MV, 11, MV, MV, MV},
        {10, 0, 18, MV, MV, MV, 16, MV, 12},
        {MV, 18, 0, 22, MV, MV, MV, MV, 8},
        {MV, MV, 22, 0, 20, MV, MV, 16, 21},
        {MV, MV, MV, 20, 0, 26, MV, 7, MV},
        {11, MV, MV, MV, 26, 0, 17, MV, MV},
        {MV, 16, MV, MV, MV, 17, 0, 19, MV},
        {MV, MV, MV, 16, 7, MV, 19, 0, MV},
        {MV, 12, 8, 21, MV, MV, MV, MV, 0},
    };
    
    void Prim(int sv) // O(n*n)
    {
        int i = 0;
        int j = 0;
        
        if( (0 <= sv) && (sv < VNUM) )
        {
            for(i=0; i<VNUM; i++)
            {
                Cost[i] = Matrix[sv][i];
                P[i] = sv;
                Mark[i] = 0;
            }
            
            Mark[sv] = 1;
            
            for(i=0; i<VNUM; i++)
            {
                int min = MV;
                int index = -1;
                
                for(j=0; j<VNUM; j++)
                {
                    if( !Mark[j] && (Cost[j] < min) )
                    {
                        min = Cost[j];
                        index = j;
                    }
                }
                
                if( index > -1 )
                {
                    Mark[index] = 1;
                    
                    printf("(%d, %d, %d)
    ", P[index], index, Cost[index]);
                }
                
                for(j=0; j<VNUM; j++)
                {//以index为结点查找最小权值 
                    if( !Mark[j] && (Matrix[index][j] < Cost[j]) )
                    {
                        Cost[j]  = Matrix[index][j];
                        P[j] = index;
                    }
                }
            }
        }
    }
    
    int main(int argc, char *argv[]) 
    {
        Prim(0);
        
    	return 0;
    }</span></strong>


    Kruskal算法






    小结





    最短路径



    解决步骤描述



    算法精髓




    代码  类似Prim

    Dijkstra.c


    <strong><span style="font-size:18px;">#include <stdio.h>
    #include <stdlib.h>
    
    /* run this program using the console pauser or add your own getch, system("pause") or input loop */
    
    #define VNUM 5
    #define MV 65536
    
    int P[VNUM];
    int Dist[VNUM];
    int Mark[VNUM];
    int Matrix[VNUM][VNUM] =
    {
        {0, 10, MV, 30, 100},
        {MV, 0, 50, MV, MV},
        {MV, MV, 0, MV, 10},
        {MV, MV, 20, 0, 60},
        {MV, MV, MV, MV, 0},
    };
    
    void Dijkstra(int sv) // O(n*n)
    {
        int i = 0;
        int j = 0;
        
        if( (0 <= sv) && (sv < VNUM) )
        {
            for(i=0; i<VNUM; i++)
            {
                Dist[i] = Matrix[sv][i];
                P[i] = sv;
                Mark[i] = 0;
            }
            
            Mark[sv] = 1;
            
            for(i=0; i<VNUM; i++)
            {
                int min = MV;
                int index = -1;
                
                for(j=0; j<VNUM; j++)
                {
                    if( !Mark[j] && (Dist[j] < min) )
                    {
                        min = Dist[j];
                        index = j;
                    }
                }
                
                if( index > -1 )
                {
                    Mark[index] = 1;
                }
                
                for(j=0; j<VNUM; j++)
                {
                    if( !Mark[j] && (min + Matrix[index][j] < Dist[j]) )
                    {
                        Dist[j] = min + Matrix[index][j];
                        P[j] = index;
                    }
                }
            }
            
            for(i=0; i<VNUM; i++)
            {
                int p = i;
                
                printf("%d -> %d: %d
    ", sv, p, Dist[p]);
                
                do
                {
                    printf("%d <- ", p);
                    p = P[p];
                } while( p != sv );
                
                printf("%d
    ", p);
            }
        }
    }
    
    int main(int argc, char *argv[]) 
    {
        Dijkstra(0);
    
    	return 0;
    }
    </span></strong>




    A矩阵的意义


    代码

    Floyd.c


    #include <stdio.h>
    #include <stdlib.h>
    
    /* run this program using the console pauser or add your own getch, system("pause") or input loop */
    
    #define VNUM 5
    #define MV 65536
    
    int P[VNUM][VNUM];
    int A[VNUM][VNUM];
    int Matrix[VNUM][VNUM] =
    {
        {0, 10, MV, 30, 100},
        {MV, 0, 50, MV, MV},
        {MV, MV, 0, MV, 10},
        {MV, MV, 20, 0, 60},
        {MV, MV, MV, MV, 0},
    };
    
    void Floyd() // O(n*n*n)
    {
        int i = 0;
        int j = 0;
        int k = 0;
        
        for(i=0; i<VNUM; i++)
        {
            for(j=0; j<VNUM; j++)
            {
                A[i][j] = Matrix[i][j];
                P[i][j] = j;
                //保存正序的第二个顶点 
            }
        }
        
        for(i=0; i<VNUM; i++)
        {
            for(j=0; j<VNUM; j++)
            {
                for(k=0; k<VNUM; k++)
                {
                    if( (A[j][i] + A[i][k]) < A[j][k] )
                    {
                        A[j][k] = A[j][i] + A[i][k];
                        P[j][k] = P[j][i];
                     //通过中转 
                    }
                }
            }
        }
        
        for(i=0; i<VNUM; i++)
        {
            for(j=0; j<VNUM; j++)
            {
                int p = -1;
                
                printf("%d -> %d: %d
    ", i, j, A[i][j]);
                
                printf("%d", i);
                
                p = i;
                
                do
                {
                    p = P[p][j];
                    
                    printf(" -> %d", p);
                } while( p != j);
                
                printf("
    ");
            }
        }
    }
    
    int main(int argc, char *argv[]) 
    {
        Floyd();
        
    	return 0;
    }
    



    小结




    思考:



































  • 相关阅读:
    作为另一个函数的值(读书摘)
    算法-二分查找与二叉排序树
    算法-图
    算法-二叉树
    算法-分治
    算法-回溯
    算法-动态规划
    算法-贪心
    算法-堆
    算法-栈,队列
  • 原文地址:https://www.cnblogs.com/Zyf2016/p/6337834.html
Copyright © 2011-2022 走看看