zoukankan      html  css  js  c++  java
  • Eddy's digital Roots(九余数定理)

    Eddy's digital Roots

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 5113    Accepted Submission(s): 2851


    Problem Description
    The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.

    For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.

    The Eddy's easy problem is that : give you the n,want you to find the n^n's digital Roots.
     
    Input
    The input file will contain a list of positive integers n, one per line. The end of the input will be indicated by an integer value of zero. Notice:For each integer in the input n(n<10000).
     
    Output
    Output n^n's digital root on a separate line of the output.
     
    Sample Input
    2
    4
    0
     
    Sample Output
    4
    4
     
    九余数定理:一个数的每位数字之和等于这个数对9取余,如果等于0就是9
     
     1 #include <iostream>
     2 #include <cstdio>
     3 using namespace std;
     4 int main()
     5 {
     6     int n,sum,i;
     7     while(cin>>n&&n)
     8     {
     9         sum=1;
    10         i=n;
    11         while(i--)
    12             sum=(sum*n)%9;
    13         if(sum==0)
    14             cout<<9<<endl;
    15         else
    16             cout<<sum<<endl;
    17     }
    18     return 0;
    19 }
     
  • 相关阅读:
    hdu 1698
    ACM起步要点总结(转哈工大)
    RANSAC
    Android 颜色渲染(十) ComposeShader组合渲染
    java过滤html标签函数
    Objective-C ,ios,iphone开发基础:picker控件详解与使用,(实现省市的二级联动)
    简单的三方登录SDK示例,Android Activity之间数据的传递
    搜索引擎日志分析
    继续过中等难度的题目
    包圈圈的题目
  • 原文地址:https://www.cnblogs.com/a1225234/p/4658185.html
Copyright © 2011-2022 走看看