zoukankan      html  css  js  c++  java
  • java实现哈密顿回路问题

    1 问题描述
    什么是哈密顿回路?

    引用自百度百科:

    哈密顿图(哈密尔顿图)(英语:Hamiltonian path,或Traceable path)是一个无向图,由天文学家哈密顿提出,由指定的起点前往指定的终点,途中经过所有其他节点且只经过一次。在图论中是指含有哈密顿回路的图,闭合的哈密顿路径称作哈密顿回路(Hamiltonian cycle),含有图中所有顶点的路径称作哈密顿路径。

    现在本文要解决的问题:给定一个图,判断这个图是否包含哈密顿回路?如果包含,输出其中一条哈密顿回路,如果不包含,则无任何输出。

    2 解决方案
    本文寻找哈密顿回路,运用了深度优先搜索方法,即递归和回溯法思想。

    下面代码所用图数据如下:

    在这里插入图片描述

    package com.liuzhen.chapter12;
    
    public class HamiltonCircuit {
        /*
         * 参数adjMatrix:给定图的邻接矩阵,其中值为1表示两个顶点可以相通,值为-1表示两个顶点不能相通
         */
        public void getHamiltonCircuit(int[][] adjMatrix) {
            boolean[] used = new boolean[adjMatrix.length];       //用于标记图中顶点是否被访问
            int[] path = new int[adjMatrix.length];       //记录哈密顿回路路径
            for(int i = 0;i < adjMatrix.length;i++) {
                used[i] = false;     //初始化,所有顶点均未被遍历
                path[i] = -1;        //初始化,未选中起点及到达任何顶点
            }
            used[0] = true;          //表示从第1个顶点开始遍历
            path[0] = 0;             //表示哈密顿回路起点为第0个顶点
            dfs(adjMatrix, path, used, 1);     //从第0个顶点开始进行深度优先遍历,如果存在哈密顿回路,输出一条回路,否则无输出
        }
        /*
         * 参数step:当前行走的步数,即已经遍历顶点的个数
         */
        public boolean dfs(int[][] adjMatrix, int[] path, boolean[] used, int step) {
            if(step == adjMatrix.length) {     //当已经遍历完图中所有顶点
                if(adjMatrix[path[step - 1]][0] == 1) { //最后一步到达的顶点能够回到起点
                    for(int i = 0;i < path.length;i++)
                        System.out.print(((char)(path[i] + 'a'))+"——>");
                    System.out.print(((char)(path[0] + 'a')));
                    System.out.println();
                    return true;
                }
                return false;
            } else {
                for(int i = 0;i < adjMatrix.length;i++) {
                    if(!used[i] && adjMatrix[path[step - 1]][i] == 1) {
                        used[i] = true;
                        path[step] = i;
                        if(dfs(adjMatrix, path, used, step + 1))
                            return true;
                        else {
                            used[i] = false;    //进行回溯处理
                            path[step] = -1;
                        }
                    }
                }
            }
            return false;
        }
        
        public static void main(String[] args) {
            HamiltonCircuit test = new HamiltonCircuit();
            int[][] adjMatrix = {{-1,1,1,1,-1,-1},
                    {1,-1,1,-1,-1,1},
                    {1,1,-1,1,1,-1},
                    {1,-1,1,-1,1,-1},
                    {-1,-1,1,1,-1,1},
                    {-1,1,-1,-1,1,-1}};
            test.getHamiltonCircuit(adjMatrix);
        }
    }
    

    运行结果:

    a——>b——>f——>e——>c——>d——>a
    
  • 相关阅读:
    第十二周助教总结
    第十一周助教总结
    记一次数据库mysql与tidb查询时的区别
    括号校验-Java
    (四)栈和队列的应用
    (三)栈和队列的链式存储结构
    (二)栈和队列的顺序存储结构
    windows开放服务可以远程和被访问(两台电脑可以互相访问)
    (一)栈和队列的基本概念
    (一)数据结构基本概念、存储结构、复杂度
  • 原文地址:https://www.cnblogs.com/a1439775520/p/12947995.html
Copyright © 2011-2022 走看看