689. 三个无重叠子数组的最大和
给定数组 nums 由正整数组成,找到三个互不重叠的子数组的最大和。
每个子数组的长度为k,我们要使这3*k个项的和最大化。
返回每个区间起始索引的列表(索引从 0 开始)。如果有多个结果,返回字典序最小的一个。
示例:
输入: [1,2,1,2,6,7,5,1], 2
输出: [0, 3, 5]
解释: 子数组 [1, 2], [2, 6], [7, 5] 对应的起始索引为 [0, 3, 5]。
我们也可以取 [2, 1], 但是结果 [1, 3, 5] 在字典序上更大。
注意:
nums.length的范围在[1, 20000]之间。
nums[i]的范围在[1, 65535]之间。
k的范围在[1, floor(nums.length / 3)]之间。
class Solution {
private int maxSum;
public int[] maxSumOfThreeSubarrays(int[] nums, int k) {
int n = nums.length;
int[] sum = new int[n+1], left = new int[n], right = new int[n];
for(int i=0; i<n; i++){
sum[i+1] = sum[i]+nums[i];
}
//从左面筛选
for(int i=k, leftmax = sum[k]-sum[0]; i<n ;i++){
if(sum[i+1]-sum[i+1-k] > leftmax){
leftmax = sum[i+1] - sum[i+1-k];
left[i] = i+1-k;
}else{
left[i] = left[i-1];
}
}
//右面筛选
right[n-k] = n-k;
for(int i=n-k-1, rightMax = sum[n]-sum[n-k]; i>=0; i--){
if(sum[i+k]-sum[i]>= rightMax){
right[i] = i;
rightMax = sum[i+k] - sum[i];
}else{
right[i] = right[i+1];
}
}
//去中间找,然后记录总和
int maxsum = 0; int[] result = new int[3];
for(int i=k; i<=n-2*k; i++){
int l = left[i-1], r = right[i+k];
int total = (sum[i+k]-sum[i]) + (sum[l+k] - sum[l]) + (sum[r+k]-sum[r]);
if(total>maxsum){
maxsum = total;
result[0] = l; result[1] = i; result[2] =r;
}
}
return result;
}
}